Skip to main content
Glama

mcp-run-python

Official
by pydantic
run.py16.2 kB
from __future__ import annotations as _annotations import dataclasses from collections.abc import AsyncIterator from copy import deepcopy from datetime import datetime from typing import TYPE_CHECKING, Any, Generic, Literal, overload from pydantic_graph import End, GraphRun, GraphRunContext from . import ( _agent_graph, _utils, exceptions, messages as _messages, usage as _usage, ) from .output import OutputDataT from .tools import AgentDepsT if TYPE_CHECKING: from .result import FinalResult @dataclasses.dataclass(repr=False) class AgentRun(Generic[AgentDepsT, OutputDataT]): """A stateful, async-iterable run of an [`Agent`][pydantic_ai.agent.Agent]. You generally obtain an `AgentRun` instance by calling `async with my_agent.iter(...) as agent_run:`. Once you have an instance, you can use it to iterate through the run's nodes as they execute. When an [`End`][pydantic_graph.nodes.End] is reached, the run finishes and [`result`][pydantic_ai.agent.AgentRun.result] becomes available. Example: ```python from pydantic_ai import Agent agent = Agent('openai:gpt-4o') async def main(): nodes = [] # Iterate through the run, recording each node along the way: async with agent.iter('What is the capital of France?') as agent_run: async for node in agent_run: nodes.append(node) print(nodes) ''' [ UserPromptNode( user_prompt='What is the capital of France?', instructions_functions=[], system_prompts=(), system_prompt_functions=[], system_prompt_dynamic_functions={}, ), ModelRequestNode( request=ModelRequest( parts=[ UserPromptPart( content='What is the capital of France?', timestamp=datetime.datetime(...), ) ] ) ), CallToolsNode( model_response=ModelResponse( parts=[TextPart(content='The capital of France is Paris.')], usage=RequestUsage(input_tokens=56, output_tokens=7), model_name='gpt-4o', timestamp=datetime.datetime(...), ) ), End(data=FinalResult(output='The capital of France is Paris.')), ] ''' print(agent_run.result.output) #> The capital of France is Paris. ``` You can also manually drive the iteration using the [`next`][pydantic_ai.agent.AgentRun.next] method for more granular control. """ _graph_run: GraphRun[ _agent_graph.GraphAgentState, _agent_graph.GraphAgentDeps[AgentDepsT, Any], FinalResult[OutputDataT] ] @overload def _traceparent(self, *, required: Literal[False]) -> str | None: ... @overload def _traceparent(self) -> str: ... def _traceparent(self, *, required: bool = True) -> str | None: traceparent = self._graph_run._traceparent(required=False) # type: ignore[reportPrivateUsage] if traceparent is None and required: # pragma: no cover raise AttributeError('No span was created for this agent run') return traceparent @property def ctx(self) -> GraphRunContext[_agent_graph.GraphAgentState, _agent_graph.GraphAgentDeps[AgentDepsT, Any]]: """The current context of the agent run.""" return GraphRunContext[_agent_graph.GraphAgentState, _agent_graph.GraphAgentDeps[AgentDepsT, Any]]( state=self._graph_run.state, deps=self._graph_run.deps ) @property def next_node( self, ) -> _agent_graph.AgentNode[AgentDepsT, OutputDataT] | End[FinalResult[OutputDataT]]: """The next node that will be run in the agent graph. This is the next node that will be used during async iteration, or if a node is not passed to `self.next(...)`. """ next_node = self._graph_run.next_node if isinstance(next_node, End): return next_node if _agent_graph.is_agent_node(next_node): return next_node raise exceptions.AgentRunError(f'Unexpected node type: {type(next_node)}') # pragma: no cover @property def result(self) -> AgentRunResult[OutputDataT] | None: """The final result of the run if it has ended, otherwise `None`. Once the run returns an [`End`][pydantic_graph.nodes.End] node, `result` is populated with an [`AgentRunResult`][pydantic_ai.agent.AgentRunResult]. """ graph_run_result = self._graph_run.result if graph_run_result is None: return None return AgentRunResult( graph_run_result.output.output, graph_run_result.output.tool_name, graph_run_result.state, self._graph_run.deps.new_message_index, self._traceparent(required=False), ) def __aiter__( self, ) -> AsyncIterator[_agent_graph.AgentNode[AgentDepsT, OutputDataT] | End[FinalResult[OutputDataT]]]: """Provide async-iteration over the nodes in the agent run.""" return self async def __anext__( self, ) -> _agent_graph.AgentNode[AgentDepsT, OutputDataT] | End[FinalResult[OutputDataT]]: """Advance to the next node automatically based on the last returned node.""" next_node = await self._graph_run.__anext__() if _agent_graph.is_agent_node(node=next_node): return next_node assert isinstance(next_node, End), f'Unexpected node type: {type(next_node)}' return next_node async def next( self, node: _agent_graph.AgentNode[AgentDepsT, OutputDataT], ) -> _agent_graph.AgentNode[AgentDepsT, OutputDataT] | End[FinalResult[OutputDataT]]: """Manually drive the agent run by passing in the node you want to run next. This lets you inspect or mutate the node before continuing execution, or skip certain nodes under dynamic conditions. The agent run should be stopped when you return an [`End`][pydantic_graph.nodes.End] node. Example: ```python from pydantic_ai import Agent from pydantic_graph import End agent = Agent('openai:gpt-4o') async def main(): async with agent.iter('What is the capital of France?') as agent_run: next_node = agent_run.next_node # start with the first node nodes = [next_node] while not isinstance(next_node, End): next_node = await agent_run.next(next_node) nodes.append(next_node) # Once `next_node` is an End, we've finished: print(nodes) ''' [ UserPromptNode( user_prompt='What is the capital of France?', instructions_functions=[], system_prompts=(), system_prompt_functions=[], system_prompt_dynamic_functions={}, ), ModelRequestNode( request=ModelRequest( parts=[ UserPromptPart( content='What is the capital of France?', timestamp=datetime.datetime(...), ) ] ) ), CallToolsNode( model_response=ModelResponse( parts=[TextPart(content='The capital of France is Paris.')], usage=RequestUsage(input_tokens=56, output_tokens=7), model_name='gpt-4o', timestamp=datetime.datetime(...), ) ), End(data=FinalResult(output='The capital of France is Paris.')), ] ''' print('Final result:', agent_run.result.output) #> Final result: The capital of France is Paris. ``` Args: node: The node to run next in the graph. Returns: The next node returned by the graph logic, or an [`End`][pydantic_graph.nodes.End] node if the run has completed. """ # Note: It might be nice to expose a synchronous interface for iteration, but we shouldn't do it # on this class, or else IDEs won't warn you if you accidentally use `for` instead of `async for` to iterate. next_node = await self._graph_run.next(node) if _agent_graph.is_agent_node(next_node): return next_node assert isinstance(next_node, End), f'Unexpected node type: {type(next_node)}' return next_node # TODO (v2): Make this a property def usage(self) -> _usage.RunUsage: """Get usage statistics for the run so far, including token usage, model requests, and so on.""" return self._graph_run.state.usage def __repr__(self) -> str: # pragma: no cover result = self._graph_run.result result_repr = '<run not finished>' if result is None else repr(result.output) return f'<{type(self).__name__} result={result_repr} usage={self.usage()}>' @dataclasses.dataclass class AgentRunResult(Generic[OutputDataT]): """The final result of an agent run.""" output: OutputDataT """The output data from the agent run.""" _output_tool_name: str | None = dataclasses.field(repr=False, compare=False, default=None) _state: _agent_graph.GraphAgentState = dataclasses.field( repr=False, compare=False, default_factory=_agent_graph.GraphAgentState ) _new_message_index: int = dataclasses.field(repr=False, compare=False, default=0) _traceparent_value: str | None = dataclasses.field(repr=False, compare=False, default=None) @overload def _traceparent(self, *, required: Literal[False]) -> str | None: ... @overload def _traceparent(self) -> str: ... def _traceparent(self, *, required: bool = True) -> str | None: if self._traceparent_value is None and required: # pragma: no cover raise AttributeError('No span was created for this agent run') return self._traceparent_value def _set_output_tool_return(self, return_content: str) -> list[_messages.ModelMessage]: """Set return content for the output tool. Useful if you want to continue the conversation and want to set the response to the output tool call. """ if not self._output_tool_name: raise ValueError('Cannot set output tool return content when the return type is `str`.') messages = self._state.message_history last_message = messages[-1] for idx, part in enumerate(last_message.parts): if isinstance(part, _messages.ToolReturnPart) and part.tool_name == self._output_tool_name: # Only do deepcopy when we have to modify copied_messages = list(messages) copied_last = deepcopy(last_message) copied_last.parts[idx].content = return_content # type: ignore[misc] copied_messages[-1] = copied_last return copied_messages raise LookupError(f'No tool call found with tool name {self._output_tool_name!r}.') def all_messages(self, *, output_tool_return_content: str | None = None) -> list[_messages.ModelMessage]: """Return the history of _messages. Args: output_tool_return_content: The return content of the tool call to set in the last message. This provides a convenient way to modify the content of the output tool call if you want to continue the conversation and want to set the response to the output tool call. If `None`, the last message will not be modified. Returns: List of messages. """ if output_tool_return_content is not None: return self._set_output_tool_return(output_tool_return_content) else: return self._state.message_history def all_messages_json(self, *, output_tool_return_content: str | None = None) -> bytes: """Return all messages from [`all_messages`][pydantic_ai.agent.AgentRunResult.all_messages] as JSON bytes. Args: output_tool_return_content: The return content of the tool call to set in the last message. This provides a convenient way to modify the content of the output tool call if you want to continue the conversation and want to set the response to the output tool call. If `None`, the last message will not be modified. Returns: JSON bytes representing the messages. """ return _messages.ModelMessagesTypeAdapter.dump_json( self.all_messages(output_tool_return_content=output_tool_return_content) ) def new_messages(self, *, output_tool_return_content: str | None = None) -> list[_messages.ModelMessage]: """Return new messages associated with this run. Messages from older runs are excluded. Args: output_tool_return_content: The return content of the tool call to set in the last message. This provides a convenient way to modify the content of the output tool call if you want to continue the conversation and want to set the response to the output tool call. If `None`, the last message will not be modified. Returns: List of new messages. """ return self.all_messages(output_tool_return_content=output_tool_return_content)[self._new_message_index :] def new_messages_json(self, *, output_tool_return_content: str | None = None) -> bytes: """Return new messages from [`new_messages`][pydantic_ai.agent.AgentRunResult.new_messages] as JSON bytes. Args: output_tool_return_content: The return content of the tool call to set in the last message. This provides a convenient way to modify the content of the output tool call if you want to continue the conversation and want to set the response to the output tool call. If `None`, the last message will not be modified. Returns: JSON bytes representing the new messages. """ return _messages.ModelMessagesTypeAdapter.dump_json( self.new_messages(output_tool_return_content=output_tool_return_content) ) @property def response(self) -> _messages.ModelResponse: """Return the last response from the message history.""" # The response may not be the very last item if it contained an output tool call. See `CallToolsNode._handle_final_result`. for message in reversed(self.all_messages()): if isinstance(message, _messages.ModelResponse): return message raise ValueError('No response found in the message history') # pragma: no cover # TODO (v2): Make this a property def usage(self) -> _usage.RunUsage: """Return the usage of the whole run.""" return self._state.usage # TODO (v2): Make this a property def timestamp(self) -> datetime: """Return the timestamp of last response.""" return self.response.timestamp @dataclasses.dataclass(repr=False) class AgentRunResultEvent(Generic[OutputDataT]): """An event indicating the agent run ended and containing the final result of the agent run.""" result: AgentRunResult[OutputDataT] """The result of the run.""" _: dataclasses.KW_ONLY event_kind: Literal['agent_run_result'] = 'agent_run_result' """Event type identifier, used as a discriminator.""" __repr__ = _utils.dataclasses_no_defaults_repr

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/pydantic/pydantic-ai'

If you have feedback or need assistance with the MCP directory API, please join our Discord server