Skip to main content
Glama

mcp-run-python

Official
by pydantic
_a2a.py12.2 kB
from __future__ import annotations, annotations as _annotations import uuid from collections.abc import AsyncIterator, Sequence from contextlib import asynccontextmanager from dataclasses import dataclass from functools import partial from typing import Any, Generic, TypeVar from pydantic import TypeAdapter from typing_extensions import assert_never from pydantic_ai import ( AudioUrl, BinaryContent, DocumentUrl, ImageUrl, ModelMessage, ModelRequest, ModelRequestPart, ModelResponse, ModelResponsePart, TextPart, ThinkingPart, ToolCallPart, UserPromptPart, VideoUrl, ) from .agent import AbstractAgent, AgentDepsT, OutputDataT # AgentWorker output type needs to be invariant for use in both parameter and return positions WorkerOutputT = TypeVar('WorkerOutputT') try: from fasta2a.applications import FastA2A from fasta2a.broker import Broker, InMemoryBroker from fasta2a.schema import ( AgentProvider, Artifact, DataPart, Message, Part, Skill, TaskIdParams, TaskSendParams, TextPart as A2ATextPart, ) from fasta2a.storage import InMemoryStorage, Storage from fasta2a.worker import Worker from starlette.middleware import Middleware from starlette.routing import Route from starlette.types import ExceptionHandler, Lifespan except ImportError as _import_error: raise ImportError( 'Please install the `fasta2a` package to use `Agent.to_a2a()` method, ' 'you can use the `a2a` optional group — `pip install "pydantic-ai-slim[a2a]"`' ) from _import_error @asynccontextmanager async def worker_lifespan( app: FastA2A, worker: Worker, agent: AbstractAgent[AgentDepsT, OutputDataT] ) -> AsyncIterator[None]: """Custom lifespan that runs the worker during application startup. This ensures the worker is started and ready to process tasks as soon as the application starts. """ async with app.task_manager, agent: async with worker.run(): yield def agent_to_a2a( agent: AbstractAgent[AgentDepsT, OutputDataT], *, storage: Storage | None = None, broker: Broker | None = None, # Agent card name: str | None = None, url: str = 'http://localhost:8000', version: str = '1.0.0', description: str | None = None, provider: AgentProvider | None = None, skills: list[Skill] | None = None, # Starlette debug: bool = False, routes: Sequence[Route] | None = None, middleware: Sequence[Middleware] | None = None, exception_handlers: dict[Any, ExceptionHandler] | None = None, lifespan: Lifespan[FastA2A] | None = None, ) -> FastA2A: """Create a FastA2A server from an agent.""" storage = storage or InMemoryStorage() broker = broker or InMemoryBroker() worker = AgentWorker(agent=agent, broker=broker, storage=storage) lifespan = lifespan or partial(worker_lifespan, worker=worker, agent=agent) return FastA2A( storage=storage, broker=broker, name=name or agent.name, url=url, version=version, description=description, provider=provider, skills=skills, debug=debug, routes=routes, middleware=middleware, exception_handlers=exception_handlers, lifespan=lifespan, ) @dataclass class AgentWorker(Worker[list[ModelMessage]], Generic[WorkerOutputT, AgentDepsT]): """A worker that uses an agent to execute tasks.""" agent: AbstractAgent[AgentDepsT, WorkerOutputT] async def run_task(self, params: TaskSendParams) -> None: task = await self.storage.load_task(params['id']) if task is None: raise ValueError(f'Task {params["id"]} not found') # pragma: no cover # TODO(Marcelo): Should we lock `run_task` on the `context_id`? # Ensure this task hasn't been run before if task['status']['state'] != 'submitted': raise ValueError( # pragma: no cover f'Task {params["id"]} has already been processed (state: {task["status"]["state"]})' ) await self.storage.update_task(task['id'], state='working') # Load context - contains pydantic-ai message history from previous tasks in this conversation message_history = await self.storage.load_context(task['context_id']) or [] message_history.extend(self.build_message_history(task.get('history', []))) try: result = await self.agent.run(message_history=message_history) # type: ignore await self.storage.update_context(task['context_id'], result.all_messages()) # Convert new messages to A2A format for task history a2a_messages: list[Message] = [] for message in result.new_messages(): if isinstance(message, ModelRequest): # Skip user prompts - they're already in task history continue else: # Convert response parts to A2A format a2a_parts = self._response_parts_to_a2a(message.parts) if a2a_parts: # Add if there are visible parts (text/thinking) a2a_messages.append( Message(role='agent', parts=a2a_parts, kind='message', message_id=str(uuid.uuid4())) ) artifacts = self.build_artifacts(result.output) except Exception: await self.storage.update_task(task['id'], state='failed') raise else: await self.storage.update_task( task['id'], state='completed', new_artifacts=artifacts, new_messages=a2a_messages ) async def cancel_task(self, params: TaskIdParams) -> None: pass def build_artifacts(self, result: WorkerOutputT) -> list[Artifact]: """Build artifacts from agent result. All agent outputs become artifacts to mark them as durable task outputs. For string results, we use TextPart. For structured data, we use DataPart. Metadata is included to preserve type information. """ artifact_id = str(uuid.uuid4()) part = self._convert_result_to_part(result) return [Artifact(artifact_id=artifact_id, name='result', parts=[part])] def _convert_result_to_part(self, result: WorkerOutputT) -> Part: """Convert agent result to a Part (TextPart or DataPart). For string results, returns a TextPart. For structured data, returns a DataPart with properly serialized data. """ if isinstance(result, str): return A2ATextPart(kind='text', text=result) else: output_type = type(result) type_adapter = TypeAdapter(output_type) data = type_adapter.dump_python(result, mode='json') json_schema = type_adapter.json_schema(mode='serialization') return DataPart(kind='data', data={'result': data}, metadata={'json_schema': json_schema}) def build_message_history(self, history: list[Message]) -> list[ModelMessage]: model_messages: list[ModelMessage] = [] for message in history: if message['role'] == 'user': model_messages.append(ModelRequest(parts=self._request_parts_from_a2a(message['parts']))) else: model_messages.append(ModelResponse(parts=self._response_parts_from_a2a(message['parts']))) return model_messages def _request_parts_from_a2a(self, parts: list[Part]) -> list[ModelRequestPart]: """Convert A2A Part objects to pydantic-ai ModelRequestPart objects. This handles the conversion from A2A protocol parts (text, file, data) to pydantic-ai's internal request parts (UserPromptPart with various content types). Args: parts: List of A2A Part objects from incoming messages Returns: List of ModelRequestPart objects for the pydantic-ai agent """ model_parts: list[ModelRequestPart] = [] for part in parts: if part['kind'] == 'text': model_parts.append(UserPromptPart(content=part['text'])) elif part['kind'] == 'file': file_content = part['file'] if 'bytes' in file_content: data = file_content['bytes'].encode('utf-8') mime_type = file_content.get('mime_type', 'application/octet-stream') content = BinaryContent(data=data, media_type=mime_type) model_parts.append(UserPromptPart(content=[content])) else: url = file_content['uri'] for url_cls in (DocumentUrl, AudioUrl, ImageUrl, VideoUrl): content = url_cls(url=url) try: content.media_type except ValueError: # pragma: no cover continue else: break else: raise ValueError(f'Unsupported file type: {url}') # pragma: no cover model_parts.append(UserPromptPart(content=[content])) elif part['kind'] == 'data': raise NotImplementedError('Data parts are not supported yet.') else: assert_never(part) return model_parts def _response_parts_from_a2a(self, parts: list[Part]) -> list[ModelResponsePart]: """Convert A2A Part objects to pydantic-ai ModelResponsePart objects. This handles the conversion from A2A protocol parts (text, file, data) to pydantic-ai's internal response parts. Currently only supports text parts as agent responses in A2A are expected to be text-based. Args: parts: List of A2A Part objects from stored agent messages Returns: List of ModelResponsePart objects for message history """ model_parts: list[ModelResponsePart] = [] for part in parts: if part['kind'] == 'text': model_parts.append(TextPart(content=part['text'])) elif part['kind'] == 'file': # pragma: no cover raise NotImplementedError('File parts are not supported yet.') elif part['kind'] == 'data': # pragma: no cover raise NotImplementedError('Data parts are not supported yet.') else: # pragma: no cover assert_never(part) return model_parts def _response_parts_to_a2a(self, parts: Sequence[ModelResponsePart]) -> list[Part]: """Convert pydantic-ai ModelResponsePart objects to A2A Part objects. This handles the conversion from pydantic-ai's internal response parts to A2A protocol parts. Different part types are handled as follows: - TextPart: Converted directly to A2A TextPart - ThinkingPart: Converted to TextPart with metadata indicating it's thinking - ToolCallPart: Skipped (internal to agent execution) Args: parts: List of ModelResponsePart objects from agent response Returns: List of A2A Part objects suitable for sending via A2A protocol """ a2a_parts: list[Part] = [] for part in parts: if isinstance(part, TextPart): a2a_parts.append(A2ATextPart(kind='text', text=part.content)) elif isinstance(part, ThinkingPart): # Convert thinking to text with metadata a2a_parts.append( A2ATextPart( kind='text', text=part.content, metadata={'type': 'thinking', 'thinking_id': part.id, 'signature': part.signature}, ) ) elif isinstance(part, ToolCallPart): # Skip tool calls - they're internal to agent execution pass return a2a_parts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/pydantic/pydantic-ai'

If you have feedback or need assistance with the MCP directory API, please join our Discord server