Skip to main content
Glama

mcp-run-python

Official
by pydantic
output.py13 kB
from __future__ import annotations from collections.abc import Awaitable, Callable, Sequence from dataclasses import dataclass from typing import Any, Generic, Literal from pydantic import GetCoreSchemaHandler, GetJsonSchemaHandler from pydantic.json_schema import JsonSchemaValue from pydantic_core import core_schema from typing_extensions import TypeAliasType, TypeVar, deprecated from . import _utils, exceptions from ._json_schema import InlineDefsJsonSchemaTransformer from .messages import ToolCallPart from .tools import DeferredToolRequests, ObjectJsonSchema, RunContext, ToolDefinition __all__ = ( # classes 'ToolOutput', 'NativeOutput', 'PromptedOutput', 'TextOutput', 'StructuredDict', 'OutputObjectDefinition', # types 'OutputDataT', 'OutputMode', 'StructuredOutputMode', 'OutputSpec', 'OutputTypeOrFunction', 'TextOutputFunc', ) T = TypeVar('T') T_co = TypeVar('T_co', covariant=True) OutputDataT = TypeVar('OutputDataT', default=str, covariant=True) """Covariant type variable for the output data type of a run.""" OutputMode = Literal['text', 'tool', 'native', 'prompted', 'tool_or_text', 'image'] """All output modes. `tool_or_text` is deprecated and no longer in use. """ StructuredOutputMode = Literal['tool', 'native', 'prompted'] """Output modes that can be used for structured output. Used by ModelProfile.default_structured_output_mode""" OutputTypeOrFunction = TypeAliasType( 'OutputTypeOrFunction', type[T_co] | Callable[..., Awaitable[T_co] | T_co], type_params=(T_co,) ) """Definition of an output type or function. You should not need to import or use this type directly. See [output docs](../output.md) for more information. """ TextOutputFunc = TypeAliasType( 'TextOutputFunc', Callable[[RunContext, str], Awaitable[T_co] | T_co] | Callable[[str], Awaitable[T_co] | T_co], type_params=(T_co,), ) """Definition of a function that will be called to process the model's plain text output. The function must take a single string argument. You should not need to import or use this type directly. See [text output docs](../output.md#text-output) for more information. """ @dataclass(init=False) class ToolOutput(Generic[OutputDataT]): """Marker class to use a tool for output and optionally customize the tool. Example: ```python {title="tool_output.py"} from pydantic import BaseModel from pydantic_ai import Agent, ToolOutput class Fruit(BaseModel): name: str color: str class Vehicle(BaseModel): name: str wheels: int agent = Agent( 'openai:gpt-4o', output_type=[ ToolOutput(Fruit, name='return_fruit'), ToolOutput(Vehicle, name='return_vehicle'), ], ) result = agent.run_sync('What is a banana?') print(repr(result.output)) #> Fruit(name='banana', color='yellow') ``` """ output: OutputTypeOrFunction[OutputDataT] """An output type or function.""" name: str | None """The name of the tool that will be passed to the model. If not specified and only one output is provided, `final_result` will be used. If multiple outputs are provided, the name of the output type or function will be added to the tool name.""" description: str | None """The description of the tool that will be passed to the model. If not specified, the docstring of the output type or function will be used.""" max_retries: int | None """The maximum number of retries for the tool.""" strict: bool | None """Whether to use strict mode for the tool.""" def __init__( self, type_: OutputTypeOrFunction[OutputDataT], *, name: str | None = None, description: str | None = None, max_retries: int | None = None, strict: bool | None = None, ): self.output = type_ self.name = name self.description = description self.max_retries = max_retries self.strict = strict @dataclass(init=False) class NativeOutput(Generic[OutputDataT]): """Marker class to use the model's native structured outputs functionality for outputs and optionally customize the name and description. Example: ```python {title="native_output.py" requires="tool_output.py"} from pydantic_ai import Agent, NativeOutput from tool_output import Fruit, Vehicle agent = Agent( 'openai:gpt-4o', output_type=NativeOutput( [Fruit, Vehicle], name='Fruit or vehicle', description='Return a fruit or vehicle.' ), ) result = agent.run_sync('What is a Ford Explorer?') print(repr(result.output)) #> Vehicle(name='Ford Explorer', wheels=4) ``` """ outputs: OutputTypeOrFunction[OutputDataT] | Sequence[OutputTypeOrFunction[OutputDataT]] """The output types or functions.""" name: str | None """The name of the structured output that will be passed to the model. If not specified and only one output is provided, the name of the output type or function will be used.""" description: str | None """The description of the structured output that will be passed to the model. If not specified and only one output is provided, the docstring of the output type or function will be used.""" strict: bool | None """Whether to use strict mode for the output, if the model supports it.""" def __init__( self, outputs: OutputTypeOrFunction[OutputDataT] | Sequence[OutputTypeOrFunction[OutputDataT]], *, name: str | None = None, description: str | None = None, strict: bool | None = None, ): self.outputs = outputs self.name = name self.description = description self.strict = strict @dataclass(init=False) class PromptedOutput(Generic[OutputDataT]): """Marker class to use a prompt to tell the model what to output and optionally customize the prompt. Example: ```python {title="prompted_output.py" requires="tool_output.py"} from pydantic import BaseModel from pydantic_ai import Agent, PromptedOutput from tool_output import Vehicle class Device(BaseModel): name: str kind: str agent = Agent( 'openai:gpt-4o', output_type=PromptedOutput( [Vehicle, Device], name='Vehicle or device', description='Return a vehicle or device.' ), ) result = agent.run_sync('What is a MacBook?') print(repr(result.output)) #> Device(name='MacBook', kind='laptop') agent = Agent( 'openai:gpt-4o', output_type=PromptedOutput( [Vehicle, Device], template='Gimme some JSON: {schema}' ), ) result = agent.run_sync('What is a Ford Explorer?') print(repr(result.output)) #> Vehicle(name='Ford Explorer', wheels=4) ``` """ outputs: OutputTypeOrFunction[OutputDataT] | Sequence[OutputTypeOrFunction[OutputDataT]] """The output types or functions.""" name: str | None """The name of the structured output that will be passed to the model. If not specified and only one output is provided, the name of the output type or function will be used.""" description: str | None """The description that will be passed to the model. If not specified and only one output is provided, the docstring of the output type or function will be used.""" template: str | None """Template for the prompt passed to the model. The '{schema}' placeholder will be replaced with the output JSON schema. If not specified, the default template specified on the model's profile will be used. """ def __init__( self, outputs: OutputTypeOrFunction[OutputDataT] | Sequence[OutputTypeOrFunction[OutputDataT]], *, name: str | None = None, description: str | None = None, template: str | None = None, ): self.outputs = outputs self.name = name self.description = description self.template = template @dataclass class OutputObjectDefinition: """Definition of an output object used for structured output generation.""" json_schema: ObjectJsonSchema name: str | None = None description: str | None = None strict: bool | None = None @dataclass class TextOutput(Generic[OutputDataT]): """Marker class to use text output for an output function taking a string argument. Example: ```python from pydantic_ai import Agent, TextOutput def split_into_words(text: str) -> list[str]: return text.split() agent = Agent( 'openai:gpt-4o', output_type=TextOutput(split_into_words), ) result = agent.run_sync('Who was Albert Einstein?') print(result.output) #> ['Albert', 'Einstein', 'was', 'a', 'German-born', 'theoretical', 'physicist.'] ``` """ output_function: TextOutputFunc[OutputDataT] """The function that will be called to process the model's plain text output. The function must take a single string argument.""" def StructuredDict( json_schema: JsonSchemaValue, name: str | None = None, description: str | None = None ) -> type[JsonSchemaValue]: """Returns a `dict[str, Any]` subclass with a JSON schema attached that will be used for structured output. Args: json_schema: A JSON schema of type `object` defining the structure of the dictionary content. name: Optional name of the structured output. If not provided, the `title` field of the JSON schema will be used if it's present. description: Optional description of the structured output. If not provided, the `description` field of the JSON schema will be used if it's present. Example: ```python {title="structured_dict.py"} from pydantic_ai import Agent, StructuredDict schema = { 'type': 'object', 'properties': { 'name': {'type': 'string'}, 'age': {'type': 'integer'} }, 'required': ['name', 'age'] } agent = Agent('openai:gpt-4o', output_type=StructuredDict(schema)) result = agent.run_sync('Create a person') print(result.output) #> {'name': 'John Doe', 'age': 30} ``` """ json_schema = _utils.check_object_json_schema(json_schema) # Pydantic `TypeAdapter` fails when `object.__get_pydantic_json_schema__` has `$defs`, so we inline them # See https://github.com/pydantic/pydantic/issues/12145 if '$defs' in json_schema: json_schema = InlineDefsJsonSchemaTransformer(json_schema).walk() if '$defs' in json_schema: raise exceptions.UserError( '`StructuredDict` does not currently support recursive `$ref`s and `$defs`. See https://github.com/pydantic/pydantic/issues/12145 for more information.' ) if name: json_schema['title'] = name if description: json_schema['description'] = description class _StructuredDict(JsonSchemaValue): __is_model_like__ = True @classmethod def __get_pydantic_core_schema__( cls, source_type: Any, handler: GetCoreSchemaHandler ) -> core_schema.CoreSchema: return core_schema.dict_schema( keys_schema=core_schema.str_schema(), values_schema=core_schema.any_schema(), ) @classmethod def __get_pydantic_json_schema__( cls, core_schema: core_schema.CoreSchema, handler: GetJsonSchemaHandler ) -> JsonSchemaValue: return json_schema return _StructuredDict _OutputSpecItem = TypeAliasType( '_OutputSpecItem', OutputTypeOrFunction[T_co] | ToolOutput[T_co] | NativeOutput[T_co] | PromptedOutput[T_co] | TextOutput[T_co], type_params=(T_co,), ) OutputSpec = TypeAliasType( 'OutputSpec', _OutputSpecItem[T_co] | Sequence['OutputSpec[T_co]'], type_params=(T_co,), ) """Specification of the agent's output data. This can be a single type, a function, a sequence of types and/or functions, or an instance of one of the output mode marker classes: - [`ToolOutput`][pydantic_ai.output.ToolOutput] - [`NativeOutput`][pydantic_ai.output.NativeOutput] - [`PromptedOutput`][pydantic_ai.output.PromptedOutput] - [`TextOutput`][pydantic_ai.output.TextOutput] You should not need to import or use this type directly. See [output docs](../output.md) for more information. """ @deprecated('`DeferredToolCalls` is deprecated, use `DeferredToolRequests` instead') class DeferredToolCalls(DeferredToolRequests): # pragma: no cover @property @deprecated('`DeferredToolCalls.tool_calls` is deprecated, use `DeferredToolRequests.calls` instead') def tool_calls(self) -> list[ToolCallPart]: return self.calls @property @deprecated('`DeferredToolCalls.tool_defs` is deprecated') def tool_defs(self) -> dict[str, ToolDefinition]: return {}

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/pydantic/pydantic-ai'

If you have feedback or need assistance with the MCP directory API, please join our Discord server