Skip to main content
Glama
powerdrillai

Powerdrill MCP Server

Official
by powerdrillai

mcp_powerdrill_create_job

Analyze Powerdrill datasets by creating AI-powered analysis jobs to answer natural language questions about your data.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
questionYesThe natural language question or prompt to analyze the data
dataset_idYesThe ID of the dataset to analyze
datasource_idsNoOptional array of specific data source IDs within the dataset to analyze
session_idYesSession ID to group related jobs
streamNoWhether to stream the results (default: false)
output_languageNoThe language for the output (default: AUTO)AUTO
job_modeNoThe job mode (default: AUTO)AUTO

Implementation Reference

  • MCP handler function that parses arguments, calls PowerdrillClient.createJob, processes the response blocks (simplifying TABLE/IMAGE), formats as MCP content, handles errors
    async (args, extra) => { try { // Initialize Powerdrill client const client = new (await import('./utils/powerdrillClient.js')).PowerdrillClient(); // Create job parameters const jobParams = { question: args.question, dataset_id: args.dataset_id, datasource_ids: args.datasource_ids, session_id: args.session_id, stream: args.stream, output_language: args.output_language, job_mode: args.job_mode }; // Create job const response = await client.createJob(jobParams); // Check if response is valid if (response.code !== 0 || !response.data) { throw new Error(`Invalid API response: ${JSON.stringify(response)}`); } // Process blocks for a cleaner response const processedBlocks = response.data.blocks.map((block: any) => { // For TABLE and IMAGE types, just include the URL and name if (block.type === 'TABLE' || block.type === 'IMAGE') { return { type: block.type, url: block.content.url, name: block.content.name, expires_at: block.content.expires_at }; } // For other types, keep the original content return { type: block.type, content: block.content, stage: block.stage }; }); // Format the response as MCP content return { content: [ { type: "text", text: JSON.stringify({ job_id: response.data.job_id, blocks: processedBlocks }, null, 2) } ] }; } catch (error: any) { console.error(`Error creating job: ${error.message}`); // Return error response return { content: [ { type: "text", text: `Error creating job: ${error.message}` } ], isError: true }; } }
  • Zod input schema defining parameters for the mcp_powerdrill_create_job tool
    { question: z.string().describe('The natural language question or prompt to analyze the data'), dataset_id: z.string().describe('The ID of the dataset to analyze'), datasource_ids: z.array(z.string()).optional().describe('Optional array of specific data source IDs within the dataset to analyze'), session_id: z.string().describe('Session ID to group related jobs'), stream: z.boolean().optional().default(false).describe('Whether to stream the results (default: false)'), output_language: z.string().optional().default('AUTO').describe('The language for the output (default: AUTO)'), job_mode: z.string().optional().default('AUTO').describe('The job mode (default: AUTO)') },
  • src/index.ts:187-269 (registration)
    Registration of the mcp_powerdrill_create_job tool on the MCP server using server.tool
    server.tool( 'mcp_powerdrill_create_job', { question: z.string().describe('The natural language question or prompt to analyze the data'), dataset_id: z.string().describe('The ID of the dataset to analyze'), datasource_ids: z.array(z.string()).optional().describe('Optional array of specific data source IDs within the dataset to analyze'), session_id: z.string().describe('Session ID to group related jobs'), stream: z.boolean().optional().default(false).describe('Whether to stream the results (default: false)'), output_language: z.string().optional().default('AUTO').describe('The language for the output (default: AUTO)'), job_mode: z.string().optional().default('AUTO').describe('The job mode (default: AUTO)') }, async (args, extra) => { try { // Initialize Powerdrill client const client = new (await import('./utils/powerdrillClient.js')).PowerdrillClient(); // Create job parameters const jobParams = { question: args.question, dataset_id: args.dataset_id, datasource_ids: args.datasource_ids, session_id: args.session_id, stream: args.stream, output_language: args.output_language, job_mode: args.job_mode }; // Create job const response = await client.createJob(jobParams); // Check if response is valid if (response.code !== 0 || !response.data) { throw new Error(`Invalid API response: ${JSON.stringify(response)}`); } // Process blocks for a cleaner response const processedBlocks = response.data.blocks.map((block: any) => { // For TABLE and IMAGE types, just include the URL and name if (block.type === 'TABLE' || block.type === 'IMAGE') { return { type: block.type, url: block.content.url, name: block.content.name, expires_at: block.content.expires_at }; } // For other types, keep the original content return { type: block.type, content: block.content, stage: block.stage }; }); // Format the response as MCP content return { content: [ { type: "text", text: JSON.stringify({ job_id: response.data.job_id, blocks: processedBlocks }, null, 2) } ] }; } catch (error: any) { console.error(`Error creating job: ${error.message}`); // Return error response return { content: [ { type: "text", text: `Error creating job: ${error.message}` } ], isError: true }; } } );
  • PowerdrillClient.createJob helper method that performs the actual API POST request to /jobs endpoint
    /** * Create a job to analyze data with natural language questions * @param params Parameters for creating a job * @returns Promise with the job result */ async createJob(params: CreateJobParams) { try { // Include user_id in the request body const requestBody = { ...params, user_id: this.config.userId }; const response = await this.client.post('/jobs', requestBody); return response.data; } catch (error: any) { console.error('Error creating job:', error.message); throw error; } }
  • TypeScript interface defining parameters for createJob in PowerdrillClient
    export interface CreateJobParams { session_id: string; question: string; dataset_id: string; datasource_ids?: string[]; stream?: boolean; output_language?: string; job_mode?: string; }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/powerdrillai/powerdrill-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server