Skip to main content
Glama

MindBridge MCP Server

README.md7.56 kB
[![MseeP.ai Security Assessment Badge](https://mseep.net/pr/pinkpixel-dev-mindbridge-mcp-badge.png)](https://mseep.ai/app/pinkpixel-dev-mindbridge-mcp) <p align="center"> <img src="https://res.cloudinary.com/di7ctlowx/image/upload/v1744269194/logo_ghalxq.png" alt="Mindbridge Logo" width="400"> </p> # MindBridge MCP Server ⚡ The AI Router for Big Brain Moves [![smithery badge](https://smithery.ai/badge/@pinkpixel-dev/mindbridge-mcp)](https://smithery.ai/server/@pinkpixel-dev/mindbridge-mcp) MindBridge is your AI command hub — a Model Context Protocol (MCP) server built to unify, organize, and supercharge your LLM workflows. Forget vendor lock-in. Forget juggling a dozen APIs. MindBridge connects your apps to *any* model, from OpenAI and Anthropic to Ollama and DeepSeek — and lets them talk to each other like a team of expert consultants. Need raw speed? Grab a cheap model. Need complex reasoning? Route it to a specialist. Want a second opinion? MindBridge has that built in. This isn't just model aggregation. It's model orchestration. --- ## Core Features 🔥 | What it does | Why you should use it | |--------------|--------------| | Multi-LLM Support | Instantly switch between OpenAI, Anthropic, Google, DeepSeek, OpenRouter, Ollama (local models), and OpenAI-compatible APIs.| | Reasoning Engine Aware | Smart routing to models built for deep reasoning like Claude, GPT-4o, DeepSeek Reasoner, etc.| | getSecondOpinion Tool | Ask multiple models the same question to compare responses side-by-side. | | OpenAI-Compatible API Layer | Drop MindBridge into any tool expecting OpenAI endpoints (Azure, Together.ai, Groq, etc.). | | Auto-Detects Providers | Just add your keys. MindBridge handles setup & discovery automagically. | | Flexible as Hell | Configure everything via env vars, MCP config, or JSON — it's your call. | --- ## Why MindBridge? > *"Every LLM is good at something. MindBridge makes them work together."* Perfect for: - Agent builders - Multi-model workflows - AI orchestration engines - Reasoning-heavy tasks - Building smarter AI dev environments - LLM-powered backends - Anyone tired of vendor walled gardens --- ## Installation 🛠️ ### Option 1: Install from npm (Recommended) ```bash # Install globally npm install -g @pinkpixel/mindbridge # use with npx npx @pinkpixel/mindbridge ``` ### Installing via Smithery To install mindbridge-mcp for Claude Desktop automatically via [Smithery](https://smithery.ai/server/@pinkpixel-dev/mindbridge-mcp): ```bash npx -y @smithery/cli install @pinkpixel-dev/mindbridge-mcp --client claude ``` ### Option 2: Install from source 1. Clone the repository: ```bash git clone https://github.com/pinkpixel-dev/mindbridge.git cd mindbridge ``` 2. Install dependencies: ```bash chmod +x install.sh ./install.sh ``` 3. Configure environment variables: ```bash cp .env.example .env ``` Edit `.env` and add your API keys for the providers you want to use. ## Configuration ⚙️ ### Environment Variables The server supports the following environment variables: - `OPENAI_API_KEY`: Your OpenAI API key - `ANTHROPIC_API_KEY`: Your Anthropic API key - `DEEPSEEK_API_KEY`: Your DeepSeek API key - `GOOGLE_API_KEY`: Your Google AI API key - `OPENROUTER_API_KEY`: Your OpenRouter API key - `OLLAMA_BASE_URL`: Ollama instance URL (default: http://localhost:11434) - `OPENAI_COMPATIBLE_API_KEY`: (Optional) API key for OpenAI-compatible services - `OPENAI_COMPATIBLE_API_BASE_URL`: Base URL for OpenAI-compatible services - `OPENAI_COMPATIBLE_API_MODELS`: Comma-separated list of available models ### MCP Configuration For use with MCP-compatible IDEs like Cursor or Windsurf, you can use the following configuration in your `mcp.json` file: ```json { "mcpServers": { "mindbridge": { "command": "npx", "args": [ "-y", "@pinkpixel/mindbridge" ], "env": { "OPENAI_API_KEY": "OPENAI_API_KEY_HERE", "ANTHROPIC_API_KEY": "ANTHROPIC_API_KEY_HERE", "GOOGLE_API_KEY": "GOOGLE_API_KEY_HERE", "DEEPSEEK_API_KEY": "DEEPSEEK_API_KEY_HERE", "OPENROUTER_API_KEY": "OPENROUTER_API_KEY_HERE" }, "provider_config": { "openai": { "default_model": "gpt-4o" }, "anthropic": { "default_model": "claude-3-5-sonnet-20241022" }, "google": { "default_model": "gemini-2.0-flash" }, "deepseek": { "default_model": "deepseek-chat" }, "openrouter": { "default_model": "openai/gpt-4o" }, "ollama": { "base_url": "http://localhost:11434", "default_model": "llama3" }, "openai_compatible": { "api_key": "API_KEY_HERE_OR_REMOVE_IF_NOT_NEEDED", "base_url": "FULL_API_URL_HERE", "available_models": ["MODEL1", "MODEL2"], "default_model": "MODEL1" } }, "default_params": { "temperature": 0.7, "reasoning_effort": "medium" }, "alwaysAllow": [ "getSecondOpinion", "listProviders", "listReasoningModels" ] } } } ``` Replace the API keys with your actual keys. For the OpenAI-compatible configuration, you can remove the `api_key` field if the service doesn't require authentication. ## Usage 💫 ### Starting the Server Development mode with auto-reload: ```bash npm run dev ``` Production mode: ```bash npm run build npm start ``` When installed globally: ```bash mindbridge ``` ### Available Tools 1. **getSecondOpinion** ```typescript { provider: string; // LLM provider name model: string; // Model identifier prompt: string; // Your question or prompt systemPrompt?: string; // Optional system instructions temperature?: number; // Response randomness (0-1) maxTokens?: number; // Maximum response length reasoning_effort?: 'low' | 'medium' | 'high'; // For reasoning models } ``` 2. **listProviders** - Lists all configured providers and their available models - No parameters required 3. **listReasoningModels** - Lists models optimized for reasoning tasks - No parameters required ## Example Usage 📝 ```typescript // Get an opinion from GPT-4o { "provider": "openai", "model": "gpt-4o", "prompt": "What are the key considerations for database sharding?", "temperature": 0.7, "maxTokens": 1000 } // Get a reasoned response from OpenAI's o1 model { "provider": "openai", "model": "o1", "prompt": "Explain the mathematical principles behind database indexing", "reasoning_effort": "high", "maxTokens": 4000 } // Get a reasoned response from DeepSeek { "provider": "deepseek", "model": "deepseek-reasoner", "prompt": "What are the tradeoffs between microservices and monoliths?", "reasoning_effort": "high", "maxTokens": 2000 } // Use an OpenAI-compatible provider { "provider": "openaiCompatible", "model": "YOUR_MODEL_NAME", "prompt": "Explain the concept of eventual consistency in distributed systems", "temperature": 0.5, "maxTokens": 1500 } ``` ## Development 🔧 - `npm run lint`: Run ESLint - `npm run format`: Format code with Prettier - `npm run clean`: Clean build artifacts - `npm run build`: Build the project ## Contributing PRs welcome! Help us make AI workflows less dumb. --- ## License MIT — do whatever, just don't be evil. --- Made with ❤️ by [Pink Pixel](https://pinkpixel.dev)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/pinkpixel-dev/mindbridge-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server