Skip to main content
Glama

Optuna MCP Server

Official
by optuna

set_sampler

Configure the sampler for hyperparameter optimization studies in Optuna, selecting from TPESampler, NSGAIISampler, RandomSampler, or GPSampler based on optimization needs.

Instructions

Set the sampler for the study. The sampler must be one of the following: - TPESampler - NSGAIISampler - RandomSampler - GPSampler

The default sampler for single-objective optimization is TPESampler. The default sampler for multi-objective optimization is NSGAIISampler. GPSampler is a Gaussian process-based sampler suitable for low-dimensional numerical optimization problems.

Input Schema

NameRequiredDescriptionDefault
nameYes

Input Schema (JSON Schema)

{ "properties": { "name": { "enum": [ "TPESampler", "NSGAIISampler", "RandomSampler", "GPSampler" ], "title": "Name", "type": "string" } }, "required": [ "name" ], "title": "set_samplerArguments", "type": "object" }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/optuna/optuna-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server