Skip to main content
Glama

plot_param_importances

Visualize the importance of hyperparameters in optimization studies. Specify parameters, target values, and names to generate a clear plot for analyzing parameter impact on results.

Instructions

Return the parameter importances plot as an image.

Args: params: Parameter list to visualize. The default is all parameters. target: An index to specify the value to display. To plot nth objective value, set this to n. Note that this is 0-indexed, i.e., to plot the first objective value, set this to 0. By default, all objective will be plotted by setting target to None. target_name: Target’s name to display on the legend.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
paramsNo
targetNo
target_nameNoObjective Value

Implementation Reference

  • The handler function implementing the plot_param_importances tool. It uses Optuna's visualization module to create a parameter importances plot with a PedAnova importance evaluator and returns the plot as a PNG image via the Image type.
    @mcp.tool() def plot_param_importances( params: list[str] | None = None, target: int | None = None, target_name: str = "Objective Value", ) -> Image: """Return the parameter importances plot as an image. Args: params: Parameter list to visualize. The default is all parameters. target: An index to specify the value to display. To plot nth objective value, set this to n. Note that this is 0-indexed, i.e., to plot the first objective value, set this to 0. By default, all objective will be plotted by setting target to None. target_name: Target’s name to display on the legend. """ evaluator = optuna.importance.PedAnovaImportanceEvaluator() fig = optuna.visualization.plot_param_importances( mcp.study, evaluator=evaluator, params=params, target=(lambda t: t.values[target]) if target is not None else None, target_name=target_name, ) return Image(data=plotly.io.to_image(fig), format="png")

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/optuna/optuna-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server