# LangChain Agent MCP Server - Delivery Note
**Project:** LangChain Agent MCP Server
**Status:** ✅ Complete and Ready for Use
**Date:** January 2025
---
## What You're Receiving
A production-ready backend server that exposes LangChain AI agent capabilities through the Model Context Protocol (MCP). The server is fully functional, tested, and ready for deployment.
## Quick Start
1. **Install dependencies:**
```powershell
py -m pip install -r requirements.txt
```
2. **Set your OpenAI API key** in the `.env` file:
```
OPENAI_API_KEY=your-key-here
```
3. **Start the server:**
```powershell
py run_server.py
```
4. **Access the server:**
- API Documentation: http://localhost:8000/docs
- Health Check: http://localhost:8000/health
- MCP Manifest: http://localhost:8000/mcp/manifest
## Key Features
✅ **MCP-Compliant Endpoints** - Full Model Context Protocol support
✅ **LangChain Agent Integration** - Multi-step reasoning capabilities
✅ **Extensible Tool Framework** - Easy to add custom tools
✅ **Error Handling** - Comprehensive error management
✅ **Docker Support** - Ready for containerized deployment
✅ **Complete Test Suite** - All endpoints tested
✅ **Full Documentation** - Technical docs and client handoff included
## What's Included
- Complete source code with documentation
- Docker configuration for easy deployment
- Comprehensive test suite
- Technical documentation (`README_BACKEND.md`)
- Client handoff document (`CLIENT_HANDOFF.md`)
- Helper scripts for easy startup
## Main Endpoints
- **GET `/mcp/manifest`** - Returns available tools
- **POST `/mcp/invoke`** - Executes agent with user query
## Configuration
All configuration is done via the `.env` file. Key settings:
- `OPENAI_API_KEY` (required)
- `OPENAI_MODEL` (default: gpt-4o-mini)
- `PORT` (default: 8000)
- `API_KEY` (optional, for authentication)
## Documentation
- **Technical Details:** See `README_BACKEND.md`
- **Client Overview:** See `CLIENT_HANDOFF.md`
- **API Docs:** Available at `/docs` when server is running
## Support
All code is well-documented and follows best practices. For questions:
1. Check the documentation files
2. Review the test suite for usage examples
3. Access the interactive API docs at `/docs`
---
**Ready for Production Use** ✅
MCP directory API
We provide all the information about MCP servers via our MCP API.
curl -X GET 'https://glama.ai/api/mcp/v1/servers/mcpmessenger/LangchainMCP'
If you have feedback or need assistance with the MCP directory API, please join our Discord server