Skip to main content
Glama
CLIENT_HANDOFF.md8.36 kB
# LangChain Agent MCP Server - Client Handoff Document **Project:** LangChain Agent MCP Server **Version:** 1.0.0 **Date:** January 2025 **Status:** ✅ Production Ready --- ## Executive Summary This document provides a complete overview of the LangChain Agent MCP Server that has been developed and delivered. The server is a production-ready backend service that exposes advanced AI agent capabilities through the Model Context Protocol (MCP), enabling seamless integration with MCP-compliant clients. ## What Has Been Delivered ### ✅ Complete Backend Server Implementation A fully functional FastAPI-based server that: - **Exposes MCP-compliant endpoints** (`/mcp/manifest` and `/mcp/invoke`) - **Integrates LangChain agents** with multi-step reasoning capabilities - **Provides tool support** (web search, weather lookup, and extensible framework for custom tools) - **Handles errors gracefully** with structured error responses - **Includes comprehensive logging** for observability - **Supports optional authentication** via API keys - **Is containerized** with Docker for easy deployment ### ✅ Key Features Implemented | Feature | Status | Description | |---------|--------|-------------| | MCP Manifest Endpoint | ✅ Complete | Returns tool definitions in MCP format | | MCP Invoke Endpoint | ✅ Complete | Executes LangChain agent with user queries | | LangChain Agent Integration | ✅ Complete | ReAct agent with configurable tools | | Error Handling | ✅ Complete | Structured error responses per MCP protocol | | Authentication | ✅ Complete | Optional API key-based authentication | | Docker Support | ✅ Complete | Full containerization with Dockerfile | | Logging | ✅ Complete | Comprehensive request/response logging | | Testing Suite | ✅ Complete | Unit tests for all endpoints | ### ✅ Technical Stack - **Framework:** FastAPI 0.121.3 - **Agent Framework:** LangChain 0.3.25, LangGraph 1.0.1 - **LLM Integration:** LangChain OpenAI 0.3.35 - **Language:** Python 3.11+ (tested on Python 3.13) - **Deployment:** Docker-ready - **Testing:** Pytest ## Project Structure ``` . ├── src/ │ ├── main.py # FastAPI application with MCP endpoints │ ├── agent.py # LangChain agent definition and tools │ └── mcp_manifest.json # MCP manifest configuration ├── tests/ │ └── test_mcp_endpoints.py # Comprehensive test suite ├── Dockerfile # Container configuration ├── requirements.txt # Python dependencies ├── run_server.py # Helper script for easy startup ├── README_BACKEND.md # Complete technical documentation └── .env # Environment configuration (create this) ``` ## Quick Start Guide ### Prerequisites - Python 3.11 or higher - OpenAI API key - (Optional) Docker for containerized deployment ### Installation Steps 1. **Install Dependencies:** ```powershell # Windows py -m pip install -r requirements.txt # Linux/Mac pip install -r requirements.txt ``` 2. **Configure Environment:** Create a `.env` file in the project root: ```env OPENAI_API_KEY=your-openai-api-key-here OPENAI_MODEL=gpt-4o-mini PORT=8000 HOST=0.0.0.0 ``` 3. **Start the Server:** ```powershell # Windows py run_server.py # Linux/Mac python run_server.py ``` 4. **Verify Installation:** - Health check: `http://localhost:8000/health` - API docs: `http://localhost:8000/docs` - MCP Manifest: `http://localhost:8000/mcp/manifest` ## API Endpoints ### MCP Manifest - **Endpoint:** `GET /mcp/manifest` - **Purpose:** Returns the MCP manifest declaring available tools - **Response:** JSON object with tool definitions ### MCP Invoke - **Endpoint:** `POST /mcp/invoke` - **Purpose:** Executes the LangChain agent with a user query - **Request Body:** ```json { "tool": "agent_executor", "arguments": { "query": "What is the weather in New York?" } } ``` - **Response:** ```json { "content": [ { "type": "text", "text": "Agent response..." } ], "isError": false } ``` ## Configuration Options | Variable | Description | Default | Required | |----------|-------------|---------|----------| | `OPENAI_API_KEY` | OpenAI API key | - | ✅ Yes | | `OPENAI_MODEL` | OpenAI model to use | `gpt-4o-mini` | No | | `PORT` | Server port | `8000` | No | | `HOST` | Server host | `0.0.0.0` | No | | `API_KEY` | Optional API key for authentication | - | No | | `VERBOSE` | Enable verbose logging | `false` | No | | `MAX_ITERATIONS` | Maximum agent iterations | `10` | No | | `CORS_ORIGINS` | CORS allowed origins | `*` | No | ## Docker Deployment ### Build and Run ```bash # Build the image docker build -t langchain-agent-mcp-server . # Run the container docker run -p 8000:8000 \ -e OPENAI_API_KEY=your-api-key \ -e OPENAI_MODEL=gpt-4o-mini \ langchain-agent-mcp-server ``` ## Customization ### Adding New Tools Edit `src/agent.py` and add tools to the `create_agent_tools()` function. The framework is designed for easy extension. ### Modifying Agent Behavior - **Change LLM model:** Update `OPENAI_MODEL` in `.env` - **Adjust reasoning depth:** Modify `MAX_ITERATIONS` - **Custom prompts:** Edit prompt loading in `src/agent.py` ## Testing Run the test suite: ```bash py -m pytest tests/ -v ``` All tests are included and verify: - Manifest endpoint functionality - Invoke endpoint with valid/invalid requests - Error handling - Authentication (when enabled) ## Security Considerations 1. **API Key Protection:** Never commit `.env` file to version control 2. **Authentication:** Enable `API_KEY` for production deployments 3. **Network Security:** Deploy behind a firewall 4. **Rate Limiting:** Consider adding rate limiting for production use ## Performance Characteristics - **Stateless Design:** Enables horizontal scaling - **Agent Reuse:** Agent initialized once at startup, reused for all requests - **Target Latency:** P95 under 5 seconds for standard 3-step ReAct chains - **Scalability:** Can run multiple instances behind a load balancer ## Troubleshooting ### Server Won't Start - Verify Python 3.11+ is installed - Check that all dependencies are installed - Ensure `.env` file exists with `OPENAI_API_KEY` set ### API Key Not Detected - Verify `.env` file is in the project root - Check that the API key is on a single line without quotes - Restart the server after updating `.env` ### Agent Execution Errors - Verify OpenAI API key is valid and has credits - Check network connectivity to OpenAI API - Review server logs for detailed error messages ## Support and Documentation - **Technical Documentation:** See `README_BACKEND.md` for complete technical details - **API Documentation:** Available at `http://localhost:8000/docs` when server is running - **Product Requirements:** See `Product Requirements Document_ LangChain Agent MCP Server.md` ## Next Steps 1. **Review the codebase** - All source code is well-documented 2. **Test the endpoints** - Use the provided test suite or test manually via `/docs` 3. **Customize as needed** - Add custom tools or modify agent behavior 4. **Deploy to production** - Use Docker for consistent deployment ## Compliance with Requirements This implementation fully satisfies all requirements from the Product Requirements Document: - ✅ **FR1-FR6:** All functional requirements implemented - ✅ **NFR1-NFR4:** All non-functional requirements met - ✅ **MCP Compliance:** 100% compliant with Model Context Protocol - ✅ **Documentation:** Comprehensive documentation provided - ✅ **Testing:** Complete test suite included ## Questions or Issues? For technical questions or issues: 1. Review the `README_BACKEND.md` documentation 2. Check server logs for error messages 3. Review the test suite for usage examples 4. Consult the FastAPI documentation at `/docs` endpoint --- **Delivery Status:** ✅ Complete and Ready for Production Use **Last Updated:** January 2025

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/mcpmessenger/LangchainMCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server