# Comprehensive Plan: Python Program for Google Jules Job Management
## Executive Summary
This document provides a detailed, step-by-step plan for building a Python program that manages Google Jules jobs. The plan is divided into two main phases:
1. **MVP (Minimum Viable Product)**: A functional job management system with core features
2. **Production Enhancement**: Converting the MVP into a robust, production-ready application
The program will interact with the existing Google Jules MCP server (TypeScript/Node.js) to manage Jules tasks, monitor their status, and perform operations like approving plans, sending messages, and committing branches.
---
## Part 1: MVP (Minimum Viable Product) Creation
### 1.1 MVP Objectives
Create a functional Python program that can:
- Connect to the Google Jules MCP server
- List all Jules tasks with their current status
- Get detailed information about specific tasks
- Monitor task status changes
- Send messages/instructions to Jules tasks
- Approve execution plans
- Resume paused tasks
- Create new tasks programmatically
### 1.2 MVP Architecture Overview
```
┌─────────────────────────────────────────────────────────┐
│ Python Job Manager │
│ ┌───────────────────────────────────────────────────┐ │
│ │ CLI Interface (argparse) │ │
│ └───────────────────────────────────────────────────┘ │
│ │ │
│ ┌───────────────────────────────────────────────────┐ │
│ │ Job Manager Core (job_manager.py) │ │
│ │ - Task operations │ │
│ │ - Status monitoring │ │
│ │ - Message handling │ │
│ └───────────────────────────────────────────────────┘ │
│ │ │
│ ┌───────────────────────────────────────────────────┐ │
│ │ MCP Client (mcp_client.py) │ │
│ │ - JSON-RPC communication │ │
│ │ - Tool invocation │ │
│ └───────────────────────────────────────────────────┘ │
│ │ │
│ ┌───────────────────────────────────────────────────┐ │
│ │ Data Storage (storage.py) │ │
│ │ - Local JSON cache │ │
│ │ - Task history │ │
│ └───────────────────────────────────────────────────┘ │
└─────────────────────────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────┐
│ Google Jules MCP Server (Node.js) │
│ - Browser automation (Playwright) │
│ - Jules.google.com interaction │
│ - Task management │
└─────────────────────────────────────────────────────────┘
```
### 1.3 MVP Technology Stack
**Core Dependencies:**
- Python 3.9+
- `subprocess` (built-in) - For MCP server communication
- `json` (built-in) - For JSON-RPC and data handling
- `argparse` (built-in) - For CLI interface
- `pathlib` (built-in) - For file path handling
- `typing` (built-in) - For type hints
- `dataclasses` (built-in) - For data models
**Optional Dependencies (for MVP):**
- `rich` - For enhanced terminal output (optional but recommended)
- `python-dotenv` - For environment variable management
### 1.4 MVP Project Structure
```
jules_job_manager/
├── src/
│ ├── __init__.py
│ ├── main.py # CLI entry point
│ ├── mcp_client.py # MCP communication layer
│ ├── job_manager.py # Core job management logic
│ ├── models.py # Data models (Task, Status, etc.)
│ └── storage.py # Local data persistence
├── tests/
│ ├── __init__.py
│ ├── test_mcp_client.py
│ └── test_job_manager.py
├── config/
│ └── config.json # Configuration file
├── data/
│ └── tasks.json # Local task cache
├── requirements.txt
├── setup.py
├── .env.example
└── README.md
```
### 1.5 MVP Data Models
**Task Model** (`models.py`):
```python
from dataclasses import dataclass
from typing import List, Optional
from datetime import datetime
from enum import Enum
class TaskStatus(Enum):
PENDING = "pending"
IN_PROGRESS = "in_progress"
COMPLETED = "completed"
PAUSED = "paused"
WAITING_APPROVAL = "waiting_approval"
@dataclass
class SourceFile:
filename: str
url: str
status: str # 'modified', 'created', 'deleted', 'unchanged'
@dataclass
class ChatMessage:
timestamp: str
content: str
type: str # 'user', 'jules', 'system'
@dataclass
class JulesTask:
id: str
title: str
description: str
repository: str
branch: str
status: TaskStatus
created_at: datetime
updated_at: datetime
url: str
chat_history: List[ChatMessage]
source_files: List[SourceFile]
```
### 1.6 MVP Core Components
#### 1.6.1 MCP Client (`mcp_client.py`)
**Purpose**: Handle JSON-RPC communication with the MCP server
**Key Functions**:
```python
class MCPClient:
def __init__(self, server_path: str):
"""Initialize MCP client with path to Node.js server"""
def call_tool(self, tool_name: str, arguments: dict) -> dict:
"""Call an MCP tool and return the response"""
def list_tools(self) -> List[dict]:
"""Get list of available tools from MCP server"""
def _send_request(self, method: str, params: dict) -> dict:
"""Send JSON-RPC request to MCP server"""
```
**Communication Method**:
- Use `subprocess.Popen` to start the Node.js MCP server
- Communicate via stdin/stdout using JSON-RPC 2.0 protocol
- Handle request/response correlation using request IDs
#### 1.6.2 Job Manager (`job_manager.py`)
**Purpose**: High-level job management operations
**Key Functions**:
```python
class JobManager:
def __init__(self, mcp_client: MCPClient, storage: Storage):
"""Initialize job manager with MCP client and storage"""
def list_tasks(self, status_filter: Optional[str] = None) -> List[JulesTask]:
"""List all tasks, optionally filtered by status"""
def get_task(self, task_id: str) -> JulesTask:
"""Get detailed information about a specific task"""
def create_task(self, description: str, repository: str, branch: str = "main") -> JulesTask:
"""Create a new Jules task"""
def send_message(self, task_id: str, message: str) -> bool:
"""Send a message to a Jules task"""
def approve_plan(self, task_id: str) -> bool:
"""Approve the execution plan for a task"""
def resume_task(self, task_id: str) -> bool:
"""Resume a paused task"""
def monitor_task(self, task_id: str, interval: int = 30) -> None:
"""Monitor a task and print status updates"""
```
#### 1.6.3 Storage (`storage.py`)
**Purpose**: Local data persistence and caching
**Key Functions**:
```python
class Storage:
def __init__(self, data_path: str):
"""Initialize storage with path to data file"""
def save_task(self, task: JulesTask) -> None:
"""Save or update a task in local storage"""
def get_task(self, task_id: str) -> Optional[JulesTask]:
"""Retrieve a task from local storage"""
def list_tasks(self) -> List[JulesTask]:
"""List all tasks from local storage"""
def delete_task(self, task_id: str) -> bool:
"""Delete a task from local storage"""
```
### 1.7 MVP CLI Interface
**Command Structure**:
```bash
# List all tasks
python -m jules_job_manager list [--status pending|in_progress|completed|paused]
# Get task details
python -m jules_job_manager get <task_id>
# Create a new task
python -m jules_job_manager create --repo owner/repo --description "Task description" [--branch main]
# Send message to task
python -m jules_job_manager message <task_id> "Your message here"
# Approve task plan
python -m jules_job_manager approve <task_id>
# Resume paused task
python -m jules_job_manager resume <task_id>
# Monitor task status
python -m jules_job_manager monitor <task_id> [--interval 30]
```
### 1.8 MVP Configuration
**Configuration File** (`config/config.json`):
```json
{
"mcp_server": {
"path": "../google-jules-mcp/dist/index.js",
"node_path": "node"
},
"storage": {
"data_path": "./data/tasks.json"
},
"monitoring": {
"default_interval": 30,
"max_retries": 3
}
}
```
**Environment Variables** (`.env`):
```bash
# MCP Server Configuration
MCP_SERVER_PATH=../google-jules-mcp/dist/index.js
NODE_PATH=node
# Jules MCP Configuration (passed to Node.js server)
HEADLESS=true
TIMEOUT=30000
DEBUG=false
SESSION_MODE=cookies
GOOGLE_AUTH_COOKIES="your_cookies_here"
JULES_DATA_PATH=~/.jules-mcp/data.json
```
### 1.9 MVP Error Handling Strategy
**Error Categories**:
1. **Connection Errors**: MCP server not running or unreachable
2. **Authentication Errors**: Jules authentication failed
3. **Task Errors**: Task not found, invalid task ID
4. **Operation Errors**: Operation failed (approve, resume, etc.)
**Handling Approach**:
- Use try-except blocks for all external operations
- Log errors to stderr
- Return meaningful error messages to user
- Exit with appropriate exit codes (0=success, 1=error)
### 1.10 MVP Development Timeline
**Phase 1: Foundation (Days 1-2)**
- Set up project structure
- Implement data models
- Create basic MCP client with JSON-RPC communication
- Test connection to MCP server
**Phase 2: Core Features (Days 3-4)**
- Implement JobManager class
- Add list_tasks, get_task, create_task functions
- Implement local storage
- Basic error handling
**Phase 3: Advanced Operations (Days 5-6)**
- Add send_message, approve_plan, resume_task
- Implement task monitoring
- Enhanced error handling
**Phase 4: CLI Interface (Day 7)**
- Build argparse-based CLI
- Add all commands
- User-friendly output formatting
**Phase 5: Testing & Documentation (Day 8)**
- Write unit tests
- Create README with usage examples
- Test end-to-end workflows
**Total MVP Timeline: 8 days**
---
## Part 2: Converting MVP to Robust Production Program
### 2.1 Production Enhancement Objectives
Transform the MVP into a production-ready application with:
- Comprehensive error handling and recovery
- Advanced logging and monitoring
- Configuration management
- Performance optimization
- Security enhancements
- Extensive testing
- Documentation
- Deployment automation
### 2.2 Enhanced Architecture
```
┌─────────────────────────────────────────────────────────────────┐
│ Production Job Manager │
│ ┌───────────────────────────────────────────────────────────┐ │
│ │ CLI + Web API (FastAPI) │ │
│ └───────────────────────────────────────────────────────────┘ │
│ │ │
│ ┌───────────────────────────────────────────────────────────┐ │
│ │ Job Manager Core + Async Operations │ │
│ └───────────────────────────────────────────────────────────┘ │
│ │ │
│ ┌──────────────┬──────────────┬──────────────┬──────────────┐ │
│ │ MCP Client │ Retry Logic │ Logging │ Metrics │ │
│ └──────────────┴──────────────┴──────────────┴──────────────┘ │
│ │ │
│ ┌──────────────┬──────────────┬──────────────┐ │
│ │ PostgreSQL │ Redis │ File Cache │ │
│ └──────────────┴──────────────┴──────────────┘ │
└─────────────────────────────────────────────────────────────────┘
```
### 2.3 Production Technology Stack
**Additional Dependencies**:
- `asyncio` - Asynchronous operations
- `aiohttp` - Async HTTP client
- `fastapi` - Web API framework
- `uvicorn` - ASGI server
- `pydantic` - Data validation
- `sqlalchemy` - Database ORM
- `alembic` - Database migrations
- `redis` - Caching and pub/sub
- `prometheus-client` - Metrics collection
- `structlog` - Structured logging
- `tenacity` - Retry logic
- `pytest` - Testing framework
- `pytest-asyncio` - Async testing
- `pytest-cov` - Code coverage
- `black` - Code formatting
- `mypy` - Type checking
- `ruff` - Linting
### 2.4 Enhanced Features
#### 2.4.1 Comprehensive Error Handling
**Custom Exception Hierarchy**:
```python
class JulesManagerError(Exception):
"""Base exception for Jules Manager"""
class MCPConnectionError(JulesManagerError):
"""MCP server connection failed"""
class AuthenticationError(JulesManagerError):
"""Jules authentication failed"""
class TaskNotFoundError(JulesManagerError):
"""Task not found"""
class OperationFailedError(JulesManagerError):
"""Operation failed"""
```
**Retry Logic**:
- Use `tenacity` library for automatic retries
- Exponential backoff for transient failures
- Circuit breaker pattern for persistent failures
- Configurable retry policies per operation
#### 2.4.2 Advanced Logging
**Structured Logging with `structlog`**:
```python
import structlog
logger = structlog.get_logger()
logger.info("task_created",
task_id=task.id,
repository=task.repository,
branch=task.branch)
```
**Log Levels**:
- DEBUG: Detailed diagnostic information
- INFO: General informational messages
- WARNING: Warning messages for recoverable issues
- ERROR: Error messages for failures
- CRITICAL: Critical failures requiring immediate attention
**Log Destinations**:
- Console (stdout/stderr)
- File rotation (daily/size-based)
- Centralized logging (e.g., ELK stack, CloudWatch)
#### 2.4.3 Configuration Management
**Hierarchical Configuration**:
1. Default configuration (hardcoded)
2. Configuration file (config.yaml)
3. Environment variables
4. Command-line arguments
**Configuration Schema** (`config.yaml`):
```yaml
mcp_server:
path: ../google-jules-mcp/dist/index.js
node_path: node
startup_timeout: 30
health_check_interval: 60
storage:
backend: postgresql # or 'json', 'sqlite'
connection_string: postgresql://user:pass@localhost/jules
cache_backend: redis
redis_url: redis://localhost:6379/0
monitoring:
default_interval: 30
max_retries: 3
retry_backoff: exponential
circuit_breaker_threshold: 5
logging:
level: INFO
format: json
file: logs/jules_manager.log
rotation: daily
retention_days: 30
api:
enabled: true
host: 0.0.0.0
port: 8000
cors_origins: ["*"]
metrics:
enabled: true
port: 9090
```
#### 2.4.4 Database Integration
**Schema Design** (PostgreSQL):
```sql
CREATE TABLE tasks (
id VARCHAR(255) PRIMARY KEY,
title TEXT NOT NULL,
description TEXT NOT NULL,
repository VARCHAR(255) NOT NULL,
branch VARCHAR(255) NOT NULL,
status VARCHAR(50) NOT NULL,
created_at TIMESTAMP NOT NULL,
updated_at TIMESTAMP NOT NULL,
url TEXT NOT NULL,
metadata JSONB
);
CREATE TABLE chat_messages (
id SERIAL PRIMARY KEY,
task_id VARCHAR(255) REFERENCES tasks(id),
timestamp TIMESTAMP NOT NULL,
content TEXT NOT NULL,
type VARCHAR(50) NOT NULL
);
CREATE TABLE source_files (
id SERIAL PRIMARY KEY,
task_id VARCHAR(255) REFERENCES tasks(id),
filename TEXT NOT NULL,
url TEXT NOT NULL,
status VARCHAR(50) NOT NULL
);
CREATE TABLE task_events (
id SERIAL PRIMARY KEY,
task_id VARCHAR(255) REFERENCES tasks(id),
event_type VARCHAR(100) NOT NULL,
event_data JSONB,
timestamp TIMESTAMP NOT NULL
);
CREATE INDEX idx_tasks_status ON tasks(status);
CREATE INDEX idx_tasks_repository ON tasks(repository);
CREATE INDEX idx_task_events_task_id ON task_events(task_id);
```
#### 2.4.5 Caching Strategy
**Redis Caching**:
- Cache task details (TTL: 5 minutes)
- Cache task lists (TTL: 1 minute)
- Invalidate cache on task updates
- Use Redis pub/sub for real-time updates
#### 2.4.6 Web API (FastAPI)
**API Endpoints**:
```python
# Task Management
GET /api/v1/tasks # List tasks
GET /api/v1/tasks/{task_id} # Get task details
POST /api/v1/tasks # Create task
PUT /api/v1/tasks/{task_id} # Update task
DELETE /api/v1/tasks/{task_id} # Delete task
# Task Operations
POST /api/v1/tasks/{task_id}/message # Send message
POST /api/v1/tasks/{task_id}/approve # Approve plan
POST /api/v1/tasks/{task_id}/resume # Resume task
# Monitoring
GET /api/v1/tasks/{task_id}/status # Get status
GET /api/v1/tasks/{task_id}/events # Get event history
# Health & Metrics
GET /health # Health check
GET /metrics # Prometheus metrics
```
### 2.5 Testing Strategy
#### 2.5.1 Unit Tests
- Test individual functions and methods
- Mock external dependencies (MCP server, database)
- Aim for 80%+ code coverage
#### 2.5.2 Integration Tests
- Test interaction with MCP server
- Test database operations
- Test API endpoints
#### 2.5.3 End-to-End Tests
- Test complete workflows
- Test error scenarios
- Test concurrent operations
#### 2.5.4 Performance Tests
- Load testing with multiple concurrent tasks
- Stress testing with high request rates
- Memory leak detection
### 2.6 Security Enhancements
**Authentication & Authorization**:
- API key authentication for web API
- Role-based access control (RBAC)
- Secure storage of credentials (environment variables, secrets manager)
**Data Security**:
- Encrypt sensitive data at rest
- Use HTTPS for API communication
- Sanitize user inputs
- Implement rate limiting
**Audit Logging**:
- Log all operations with user context
- Track access to sensitive data
- Maintain audit trail for compliance
### 2.7 Monitoring & Observability
**Metrics Collection** (Prometheus):
```python
from prometheus_client import Counter, Histogram, Gauge
# Counters
tasks_created = Counter('jules_tasks_created_total', 'Total tasks created')
tasks_completed = Counter('jules_tasks_completed_total', 'Total tasks completed')
errors_total = Counter('jules_errors_total', 'Total errors', ['error_type'])
# Histograms
task_duration = Histogram('jules_task_duration_seconds', 'Task duration')
api_request_duration = Histogram('jules_api_request_duration_seconds', 'API request duration')
# Gauges
active_tasks = Gauge('jules_active_tasks', 'Number of active tasks')
```
**Health Checks**:
- MCP server connectivity
- Database connectivity
- Redis connectivity
- Disk space availability
**Alerting**:
- Alert on high error rates
- Alert on task failures
- Alert on service unavailability
- Integration with PagerDuty, Slack, etc.
### 2.8 Deployment
**Containerization** (Docker):
```dockerfile
FROM python:3.11-slim
WORKDIR /app
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
COPY src/ ./src/
COPY config/ ./config/
CMD ["python", "-m", "jules_job_manager"]
```
**Orchestration** (Docker Compose):
```yaml
version: '3.8'
services:
jules-manager:
build: .
ports:
- "8000:8000"
- "9090:9090"
environment:
- DATABASE_URL=postgresql://postgres:password@db:5432/jules
- REDIS_URL=redis://redis:6379/0
depends_on:
- db
- redis
db:
image: postgres:15
environment:
- POSTGRES_DB=jules
- POSTGRES_PASSWORD=password
volumes:
- postgres_data:/var/lib/postgresql/data
redis:
image: redis:7-alpine
volumes:
- redis_data:/data
volumes:
postgres_data:
redis_data:
```
### 2.9 Documentation
**User Documentation**:
- Installation guide
- Configuration guide
- Usage examples
- API reference
- Troubleshooting guide
**Developer Documentation**:
- Architecture overview
- Code structure
- Contributing guidelines
- Development setup
- Testing guide
**API Documentation**:
- OpenAPI/Swagger specification
- Interactive API documentation (FastAPI auto-generated)
- Code examples in multiple languages
### 2.10 Production Timeline
**Phase 1: Error Handling & Logging (Week 1)**
- Implement custom exceptions
- Add retry logic with tenacity
- Set up structured logging
- Add comprehensive error messages
**Phase 2: Database Integration (Week 2)**
- Design database schema
- Implement SQLAlchemy models
- Create migration scripts
- Add database operations
**Phase 3: Caching & Performance (Week 3)**
- Integrate Redis caching
- Implement cache invalidation
- Optimize database queries
- Add connection pooling
**Phase 4: Web API (Week 4)**
- Build FastAPI application
- Implement all endpoints
- Add authentication
- Create API documentation
**Phase 5: Testing (Week 5)**
- Write unit tests
- Write integration tests
- Write end-to-end tests
- Set up CI/CD pipeline
**Phase 6: Monitoring & Metrics (Week 6)**
- Implement Prometheus metrics
- Add health checks
- Set up alerting
- Create dashboards (Grafana)
**Phase 7: Security & Compliance (Week 7)**
- Implement authentication/authorization
- Add audit logging
- Security audit
- Penetration testing
**Phase 8: Deployment & Documentation (Week 8)**
- Create Docker images
- Set up orchestration
- Write documentation
- Production deployment
**Total Production Timeline: 8 weeks**
---
## Appendix A: Key Challenges & Mitigation Strategies
### Challenge 1: MCP Server Communication
**Issue**: Reliable communication with Node.js MCP server via stdin/stdout
**Mitigation**:
- Implement robust JSON-RPC client with request/response correlation
- Add connection health checks
- Implement automatic reconnection logic
### Challenge 2: Asynchronous Task Monitoring
**Issue**: Jules tasks run asynchronously and may take hours
**Mitigation**:
- Implement polling-based monitoring with configurable intervals
- Use webhooks if available in future Jules versions
- Store task state locally for offline access
### Challenge 3: Authentication Management
**Issue**: Google authentication cookies may expire
**Mitigation**:
- Implement cookie refresh mechanism
- Detect authentication failures and prompt for re-authentication
- Support multiple authentication modes (cookies, Browserbase, etc.)
### Challenge 4: Concurrent Operations
**Issue**: Multiple users/processes accessing the same tasks
**Mitigation**:
- Use database transactions for consistency
- Implement optimistic locking
- Add distributed locks (Redis) for critical operations
### Challenge 5: Error Recovery
**Issue**: Handling partial failures and maintaining consistency
**Mitigation**:
- Implement idempotent operations
- Use event sourcing for audit trail
- Add rollback mechanisms for failed operations
---
## Appendix B: Example Usage Scenarios
### Scenario 1: Automated Bug Fix Workflow
```bash
# Create task for bug fix
task_id=$(python -m jules_job_manager create \
--repo mycompany/webapp \
--description "Fix login bug with special characters" \
--branch main)
# Monitor task until plan is ready
python -m jules_job_manager monitor $task_id --until waiting_approval
# Approve the plan
python -m jules_job_manager approve $task_id
# Monitor until completion
python -m jules_job_manager monitor $task_id --until completed
# Get final status
python -m jules_job_manager get $task_id
```
### Scenario 2: Batch Task Creation
```python
# Python script for batch task creation
from jules_job_manager import JobManager
manager = JobManager()
tasks = [
{"repo": "mycompany/frontend", "description": "Add dark mode support"},
{"repo": "mycompany/backend", "description": "Optimize database queries"},
{"repo": "mycompany/api", "description": "Add rate limiting"},
]
for task_data in tasks:
task = manager.create_task(
repository=task_data["repo"],
description=task_data["description"]
)
print(f"Created task {task.id} for {task.repository}")
```
### Scenario 3: Status Dashboard
```python
# Display real-time status of all tasks
from jules_job_manager import JobManager
from rich.table import Table
from rich.console import Console
manager = JobManager()
console = Console()
while True:
tasks = manager.list_tasks()
table = Table(title="Jules Tasks Status")
table.add_column("ID", style="cyan")
table.add_column("Repository", style="magenta")
table.add_column("Status", style="green")
table.add_column("Updated", style="yellow")
for task in tasks:
table.add_row(
task.id[:8],
task.repository,
task.status.value,
task.updated_at.strftime("%Y-%m-%d %H:%M")
)
console.clear()
console.print(table)
time.sleep(30)
```
---
## Appendix C: Configuration Examples
### Development Configuration
```yaml
# config/development.yaml
mcp_server:
path: ../google-jules-mcp/dist/index.js
node_path: node
storage:
backend: json
data_path: ./data/tasks.json
logging:
level: DEBUG
format: text
api:
enabled: true
host: localhost
port: 8000
```
### Production Configuration
```yaml
# config/production.yaml
mcp_server:
path: /opt/jules-mcp/dist/index.js
node_path: /usr/bin/node
startup_timeout: 60
storage:
backend: postgresql
connection_string: ${DATABASE_URL}
cache_backend: redis
redis_url: ${REDIS_URL}
logging:
level: INFO
format: json
file: /var/log/jules/manager.log
api:
enabled: true
host: 0.0.0.0
port: 8000
cors_origins: ["https://dashboard.example.com"]
metrics:
enabled: true
port: 9090
```
---
## Conclusion
This comprehensive plan provides a clear roadmap for building a Python program to manage Google Jules jobs, starting with a functional MVP and evolving into a robust production system. The MVP can be completed in approximately 8 days, while the full production enhancement requires an additional 8 weeks. The modular architecture allows for incremental development and deployment, ensuring that each phase delivers value while building toward the final production-ready system.