Skip to main content
Glama

blob_read

Retrieve content from Azure Blob Storage by specifying the container and blob name. Supports integration with Azure MCP Server for secure, logged operations.

Instructions

Read a blob's content from Blob Storage

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
blob_nameYesName of the blob to read
container_nameYesName of the Blob Storage container

Implementation Reference

  • Executes the blob_read tool by creating a blob client, downloading the blob content, decoding it from bytes to UTF-8 string, and returning it as TextContent.
    elif name == "blob_read": blob_client = blob_service_client.get_blob_client( container=arguments["container_name"], blob=arguments["blob_name"] ) downloader = blob_client.download_blob() content = downloader.readall().decode("utf-8") return [TextContent(type="text", text=content)]
  • Defines the input schema and metadata for the blob_read tool, specifying required parameters container_name and blob_name.
    Tool( name="blob_read", description="Read a blob's content from Blob Storage", inputSchema={ "type": "object", "properties": { "container_name": { "type": "string", "description": "Name of the Blob Storage container", }, "blob_name": { "type": "string", "description": "Name of the blob to read", }, }, "required": ["container_name", "blob_name"], }, ),
  • Registers the blob_read tool (among others) by returning the list of tools from get_azure_tools() in response to list_tools requests.
    async def list_tools() -> list[Tool]: """List available Azure tools""" logger.debug("Handling list_tools request") return get_azure_tools() # Use get_azure_tools

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/mashriram/azure_mcp_server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server