Skip to main content
Glama

blob_list

Retrieve and list blobs stored in a specified Azure Blob Storage container using the Azure MCP Server for streamlined data management and audit tracking.

Instructions

List blobs in a Blob Storage container

Input Schema

NameRequiredDescriptionDefault
container_nameYesName of the Blob Storage container

Input Schema (JSON Schema)

{ "properties": { "container_name": { "description": "Name of the Blob Storage container", "type": "string" } }, "required": [ "container_name" ], "type": "object" }

Implementation Reference

  • Handler logic for 'blob_list' tool: retrieves the container client, lists blobs, extracts names, and prepares response.
    elif name == "blob_list": container_client = blob_service_client.get_container_client( arguments["container_name"] ) blob_list = container_client.list_blobs() blob_names = [blob.name for blob in blob_list] response = {"blob_names": blob_names}
  • Schema definition for 'blob_list' tool, specifying input as object with required 'container_name' string.
    Tool( name="blob_list", description="List blobs in a Blob Storage container", inputSchema={ "type": "object", "properties": { "container_name": { "type": "string", "description": "Name of the Blob Storage container", } }, "required": ["container_name"], }, ),
  • Registers the tools including 'blob_list' by returning get_azure_tools() in the list_tools handler.
    @server.list_tools() async def list_tools() -> list[Tool]: """List available Azure tools""" logger.debug("Handling list_tools request") return get_azure_tools() # Use get_azure_tools

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/mashriram/azure_mcp_server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server