Skip to main content
Glama

blob_container_create

Create a new Azure Blob Storage container to organize and store unstructured data, enabling scalable cloud storage management.

Instructions

Create a new Blob Storage container

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
container_nameYesName of the Blob Storage container to create

Implementation Reference

  • Executes the blob_container_create tool by calling create_container on BlobServiceClient with the provided container_name and returns success response.
    if name == "blob_container_create": container_client = blob_service_client.create_container( arguments["container_name"] ) response = { "container_name": container_client.container_name, "created": True, } # Simplify response
  • Defines the input schema for the blob_container_create tool, requiring a container_name string.
    Tool( name="blob_container_create", description="Create a new Blob Storage container", inputSchema={ "type": "object", "properties": { "container_name": { "type": "string", "description": "Name of the Blob Storage container to create", } }, "required": ["container_name"], }, ),
  • Registers all Azure tools, including blob_container_create, by returning the list from get_azure_tools().
    @server.list_tools() async def list_tools() -> list[Tool]: """List available Azure tools""" logger.debug("Handling list_tools request") return get_azure_tools() # Use get_azure_tools
  • Defines and returns the list of blob storage tools including blob_container_create for registration.
    def get_blob_storage_tools() -> list[Tool]: return [ Tool( name="blob_container_create", description="Create a new Blob Storage container", inputSchema={ "type": "object", "properties": { "container_name": { "type": "string", "description": "Name of the Blob Storage container to create", } }, "required": ["container_name"], }, ), Tool( name="blob_container_list", description="List all Blob Storage containers", inputSchema={"type": "object", "properties": {}}, ), Tool( name="blob_container_delete", description="Delete a Blob Storage container", inputSchema={ "type": "object", "properties": { "container_name": { "type": "string", "description": "Name of the Blob Storage container to delete", } }, "required": ["container_name"], }, ), Tool( name="blob_upload", description="Upload a blob to Blob Storage", inputSchema={ "type": "object", "properties": { "container_name": { "type": "string", "description": "Name of the Blob Storage container", }, "blob_name": { "type": "string", "description": "Name of the blob in the container", }, "file_content": { "type": "string", "description": "Base64 encoded file content for upload", }, }, "required": ["container_name", "blob_name", "file_content"], }, ), Tool( name="blob_delete", description="Delete a blob from Blob Storage", inputSchema={ "type": "object", "properties": { "container_name": { "type": "string", "description": "Name of the Blob Storage container", }, "blob_name": { "type": "string", "description": "Name of the blob to delete", }, }, "required": ["container_name", "blob_name"], }, ), Tool( name="blob_list", description="List blobs in a Blob Storage container", inputSchema={ "type": "object", "properties": { "container_name": { "type": "string", "description": "Name of the Blob Storage container", } }, "required": ["container_name"], }, ), Tool( name="blob_read", description="Read a blob's content from Blob Storage", inputSchema={ "type": "object", "properties": { "container_name": { "type": "string", "description": "Name of the Blob Storage container", }, "blob_name": { "type": "string", "description": "Name of the blob to read", }, }, "required": ["container_name", "blob_name"], }, ), ]

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/mashriram/azure_mcp_server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server