Skip to main content
Glama

sjoin_gpd

Perform spatial joins between geospatial datasets to combine attributes based on geographic relationships like intersection or containment.

Instructions

Spatial join between two GeoDataFrames using geopandas.sjoin. Args: left_path: Path to the left geospatial file. right_path: Path to the right geospatial file. how: Type of join ('left', 'right', 'inner'). predicate: Spatial predicate ('intersects', 'within', 'contains', etc.). output_path: Optional path to save the result. Returns: Dictionary with status, message, and output info.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
left_pathYes
right_pathYes
howNoinner
predicateNointersects
output_pathNo

Implementation Reference

  • Main handler function for the 'sjoin_gpd' tool, performing spatial join on two GeoDataFrames using geopandas.sjoin.
    @gis_mcp.tool() def sjoin_gpd(left_path: str, right_path: str, how: str = "inner", predicate: str = "intersects", output_path: str = None) -> Dict[str, Any]: """ Spatial join between two GeoDataFrames using geopandas.sjoin. Args: left_path: Path to the left geospatial file. right_path: Path to the right geospatial file. how: Type of join ('left', 'right', 'inner'). predicate: Spatial predicate ('intersects', 'within', 'contains', etc.). output_path: Optional path to save the result. Returns: Dictionary with status, message, and output info. """ try: left = gpd.read_file(left_path) right = gpd.read_file(right_path) if left.crs != right.crs: right = right.to_crs(left.crs) result = gpd.sjoin(left, right, how=how, predicate=predicate) if output_path: output_path_resolved = resolve_path(output_path, relative_to_storage=True) output_path_resolved.parent.mkdir(parents=True, exist_ok=True) result.to_file(str(output_path_resolved)) output_path = str(output_path_resolved) # Convert geometry to WKT for serialization preview_df = result.head(5).copy() if 'geometry' in preview_df.columns: preview_df['geometry'] = preview_df['geometry'].apply(lambda g: g.wkt if g is not None else None) preview = preview_df.to_dict(orient="records") return { "status": "success", "message": f"Spatial join ({how}, {predicate}) completed successfully.", "num_features": len(result), "crs": str(result.crs), "columns": list(result.columns), "preview": preview, "output_path": output_path, } except Exception as e: logger.error(f"Error in sjoin_gpd: {str(e)}") return {"status": "error", "message": str(e)}
  • Resource function listing 'sjoin_gpd' among available GeoPandas join operations, serving as tool discovery.
    @gis_mcp.resource("gis://geopandas/joins") def get_geopandas_joins() -> Dict[str, List[str]]: """List available GeoPandas join operations.""" return { "operations": [ "append_gpd", "merge_gpd", "sjoin_gpd", "sjoin_nearest_gpd", "point_in_polygon" ] }
  • src/gis_mcp/mcp.py:5-6 (registration)
    FastMCP server instance 'gis_mcp' that handles tool registration via decorators like @gis_mcp.tool().
    gis_mcp = FastMCP("GIS MCP")

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/mahdin75/gis-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server