Skip to main content
Glama

adbscan

Perform adaptive DBSCAN clustering on geospatial data from shapefiles to identify spatial patterns and groupings in geographic coordinates.

Instructions

Adaptive DBSCAN clustering (requires coordinates, no dependent_var).

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
shapefile_pathYes
dependent_varNo
target_crsNoEPSG:4326
distance_thresholdNo
epsNo
min_samplesNo

Implementation Reference

  • Implementation of the adbscan MCP tool handler using esda.adbscan.ADBSCAN for adaptive density-based clustering on shapefile coordinates.
    @gis_mcp.tool() def adbscan(shapefile_path: str, dependent_var: str = None, target_crs: str = "EPSG:4326", distance_threshold: float = 100000, eps: float = 0.1, min_samples: int = 5) -> Dict[str, Any]: """Adaptive DBSCAN clustering (requires coordinates, no dependent_var).""" if not os.path.exists(shapefile_path): return {"status": "error", "message": f"Shapefile not found: {shapefile_path}"} gdf = gpd.read_file(shapefile_path) gdf = gdf.to_crs(target_crs) coords = np.array(list(gdf.geometry.apply(lambda g: (g.x, g.y)))) import esda # ADBSCAN constructor - check actual signature to avoid parameter conflicts # Try different calling patterns based on actual API try: # First try: eps and min_samples as keyword arguments stat = esda.adbscan.ADBSCAN(coords, eps=eps, min_samples=min_samples) except TypeError as e: if "multiple values for argument 'eps'" in str(e): # eps might be positional - try as positional argument try: stat = esda.adbscan.ADBSCAN(coords, eps, min_samples) except Exception: # Last resort: try with just coords and keyword args without eps stat = esda.adbscan.ADBSCAN(coords, min_samples=min_samples) else: raise preview = gdf[['geometry']].head(5).copy() preview['geometry'] = preview['geometry'].apply(lambda g: g.wkt) # ADBSCAN attributes - check for available attributes labels_val = None if hasattr(stat, "labels_"): labels_val = stat.labels_.tolist() if hasattr(stat.labels_, "tolist") else list(stat.labels_) elif hasattr(stat, "labels"): labels_val = stat.labels.tolist() if hasattr(stat.labels, "tolist") else list(stat.labels) core_indices_val = None if hasattr(stat, "core_sample_indices_"): core_indices_val = stat.core_sample_indices_.tolist() if hasattr(stat.core_sample_indices_, "tolist") else list(stat.core_sample_indices_) elif hasattr(stat, "core_sample_indices"): core_indices_val = stat.core_sample_indices.tolist() if hasattr(stat.core_sample_indices, "tolist") else list(stat.core_sample_indices) components_val = None if hasattr(stat, "components_"): components_val = stat.components_.tolist() if hasattr(stat.components_, "tolist") else list(stat.components_) elif hasattr(stat, "components"): components_val = stat.components.tolist() if hasattr(stat.components, "tolist") else list(stat.components) return { "status": "success", "message": f"A-DBSCAN clustering completed successfully (eps={eps}, min_samples={min_samples})", "result": { "labels": labels_val, "core_sample_indices": core_indices_val, "components": components_val, "data_preview": preview.to_dict(orient="records") } }
  • Resource endpoint listing available ESDA operations, including adbscan, for discovery.
    @gis_mcp.resource("gis://operations/esda") def get_spatial_operations() -> Dict[str, List[str]]: """List available spatial analysis operations. This is for esda library. They are using pysal library.""" return { "operations": [ "getis_ord_g", "morans_i", "gearys_c", "gamma_statistic", "moran_local", "getis_ord_g_local", "join_counts", "join_counts_local", "adbscan" ] }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/mahdin75/gis-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server