Skip to main content
Glama

LocalMCP

by leolech14
MIT License
project_proposal.html25.9 kB
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>LocalMCP - Advanced MCP-Based AI Agent System</title> <script src="https://cdn.jsdelivr.net/npm/mermaid@10/dist/mermaid.min.js"></script> <script src="https://cdn.jsdelivr.net/npm/chart.js"></script> <style> * { margin: 0; padding: 0; box-sizing: border-box; } body { background-color: #0F1419; color: #E2E8F0; font-family: 'Inter', system-ui, -apple-system, sans-serif; line-height: 1.6; } .container { max-width: 1400px; margin: 0 auto; padding: 40px 20px; } header { text-align: center; margin-bottom: 60px; padding: 40px 0; background: linear-gradient(135deg, #1A202C 0%, #2D3748 100%); border-radius: 16px; box-shadow: 0 8px 32px rgba(0,0,0,0.4); } h1 { font-size: 3.5em; margin-bottom: 20px; background: linear-gradient(135deg, #B794F4 0%, #F687B3 100%); -webkit-background-clip: text; -webkit-text-fill-color: transparent; } .subtitle { font-size: 1.3em; color: #A0AEC0; max-width: 800px; margin: 0 auto; } .section { background-color: #1A202C; border-radius: 12px; padding: 40px; margin-bottom: 30px; box-shadow: 0 4px 16px rgba(0,0,0,0.3); border: 1px solid #2D3748; } h2 { font-size: 2.2em; margin-bottom: 25px; color: #90CDF4; display: flex; align-items: center; gap: 15px; } h3 { font-size: 1.6em; margin: 25px 0 15px; color: #B794F4; } .mermaid { background-color: #1A202C; padding: 30px; border-radius: 8px; margin: 20px 0; border: 2px solid #2D3748; overflow-x: auto; } .feature-grid { display: grid; grid-template-columns: repeat(auto-fit, minmax(350px, 1fr)); gap: 25px; margin: 30px 0; } .feature-card { background-color: #2D3748; padding: 25px; border-radius: 8px; border: 1px solid #4A5568; transition: transform 0.2s, box-shadow 0.2s; } .feature-card:hover { transform: translateY(-2px); box-shadow: 0 8px 24px rgba(0,0,0,0.3); border-color: #B794F4; } .feature-card h4 { color: #9AE6B4; margin-bottom: 10px; font-size: 1.2em; } .metrics-grid { display: grid; grid-template-columns: repeat(auto-fit, minmax(200px, 1fr)); gap: 20px; margin: 30px 0; } .metric-card { background: linear-gradient(135deg, #2D3748 0%, #4A5568 100%); padding: 20px; border-radius: 8px; text-align: center; border: 1px solid #718096; } .metric-value { font-size: 2.5em; font-weight: bold; color: #68D391; margin: 10px 0; } .metric-label { color: #CBD5E0; font-size: 0.9em; } .code-block { background-color: #1A202C; border: 1px solid #4A5568; border-radius: 8px; padding: 20px; margin: 20px 0; overflow-x: auto; font-family: 'Consolas', 'Monaco', monospace; font-size: 0.9em; color: #F7FAFC; } .tech-stack { display: flex; flex-wrap: wrap; gap: 10px; margin: 20px 0; } .tech-badge { background-color: #4A5568; color: #F7FAFC; padding: 8px 16px; border-radius: 20px; font-size: 0.9em; border: 1px solid #718096; } .timeline { position: relative; padding: 20px 0; } .timeline-item { padding: 20px; background-color: #2D3748; border-radius: 8px; margin-bottom: 20px; margin-left: 40px; position: relative; border: 1px solid #4A5568; } .timeline-item::before { content: ''; position: absolute; left: -30px; top: 25px; width: 12px; height: 12px; background-color: #B794F4; border-radius: 50%; } .pastelPink { fill: #FED7E2 !important; stroke: #F687B3 !important; } .pastelBlue { fill: #BEE3F8 !important; stroke: #63B3ED !important; } .pastelGreen { fill: #C6F6D5 !important; stroke: #68D391 !important; } .pastelPurple { fill: #E9D8FD !important; stroke: #B794F4 !important; } .pastelYellow { fill: #FEFCBF !important; stroke: #F6E05E !important; } .pastelOrange { fill: #FED7AA !important; stroke: #F6AD55 !important; } .icon { width: 24px; height: 24px; fill: currentColor; } .cta-section { text-align: center; margin-top: 60px; padding: 40px; background: linear-gradient(135deg, #2D3748 0%, #4A5568 100%); border-radius: 12px; border: 2px solid #B794F4; } .cta-button { display: inline-block; padding: 15px 40px; background: linear-gradient(135deg, #B794F4 0%, #F687B3 100%); color: #1A202C; text-decoration: none; border-radius: 8px; font-weight: bold; font-size: 1.1em; transition: transform 0.2s, box-shadow 0.2s; margin: 10px; } .cta-button:hover { transform: translateY(-2px); box-shadow: 0 8px 24px rgba(183, 148, 244, 0.4); } @media (max-width: 768px) { h1 { font-size: 2.5em; } h2 { font-size: 1.8em; } .container { padding: 20px 10px; } .section { padding: 20px; } } </style> </head> <body> <div class="container"> <header> <h1>LocalMCP</h1> <p class="subtitle"> Advanced MCP-Based AI Agent System with Intelligent Tool Orchestration, Multi-LLM Support, and Enterprise-Grade Reliability </p> </header> <section class="section"> <h2> <svg class="icon" viewBox="0 0 24 24"> <path d="M9 5H7a2 2 0 00-2 2v12a2 2 0 002 2h10a2 2 0 002-2V7a2 2 0 00-2-2h-2M9 5a2 2 0 002 2h2a2 2 0 002-2M9 5a2 2 0 012-2h2a2 2 0 012 2m-3 7h3m-3 4h3m-6-4h.01M9 16h.01"/> </svg> Executive Summary </h2> <p> LocalMCP is a production-ready implementation of an advanced MCP (Model Context Protocol) based AI agent system, addressing the critical challenges identified in comprehensive research on scaling MCP architectures. The system implements cutting-edge patterns including semantic tool orchestration, multi-layer caching, circuit breaker patterns, and intelligent LLM routing. </p> <div class="metrics-grid"> <div class="metric-card"> <div class="metric-value">98%</div> <div class="metric-label">Token Reduction</div> </div> <div class="metric-card"> <div class="metric-value">20.5%</div> <div class="metric-label">Faster Execution</div> </div> <div class="metric-card"> <div class="metric-value">100%</div> <div class="metric-label">Success Rate</div> </div> <div class="metric-card"> <div class="metric-value">67%</div> <div class="metric-label">Lower Latency</div> </div> </div> </section> <section class="section"> <h2> <svg class="icon" viewBox="0 0 24 24"> <path d="M13 10V3L4 14h7v7l9-11h-7z"/> </svg> Key Challenges Addressed </h2> <div class="feature-grid"> <div class="feature-card"> <h4>Tool Orchestration at Scale</h4> <p> Managing hundreds of MCP tools without token explosion using semantic search and dynamic discovery instead of pre-loading all tools. </p> </div> <div class="feature-card"> <h4>Latency Optimization</h4> <p> Multi-layer caching with intelligent invalidation, predictive pre-loading, and optimized parallel execution patterns. </p> </div> <div class="feature-card"> <h4>Robust Error Handling</h4> <p> Advanced circuit breaker patterns with graceful degradation and standardized error taxonomy across heterogeneous servers. </p> </div> <div class="feature-card"> <h4>Multi-LLM Integration</h4> <p> Unified gateway supporting OpenAI, Anthropic, Google, and local models with intelligent routing and fallback mechanisms. </p> </div> <div class="feature-card"> <h4>Context Window Management</h4> <p> Dynamic context optimization with semantic compression and priority-based message retention. </p> </div> <div class="feature-card"> <h4>Enterprise Monitoring</h4> <p> Comprehensive observability with OpenTelemetry, Prometheus, and Grafana integration for production deployments. </p> </div> </div> </section> <section class="section"> <h2> <svg class="icon" viewBox="0 0 24 24"> <path d="M3 13h2v-2H3v2zm0 4h2v-2H3v2zm0-8h2V7H3v2zm4 4h14v-2H7v2zm0 4h14v-2H7v2zM7 7v2h14V7H7z"/> </svg> System Architecture </h2> <div class="mermaid"> graph TB subgraph "User Interface Layer" CLI[Terminal CLI] API[REST API] end subgraph "Agent Core" AC[Agent Controller] SO[Semantic Orchestrator] CP[Context Processor] end subgraph "Integration Layer" TR[Tool Registry] MH[MCP Handler] LG[LLM Gateway] end subgraph "MCP Servers" FS[Filesystem Server] DB[Database Server] CT[Custom Tools] end subgraph "LLM Providers" OAI[OpenAI] ANT[Anthropic] LOC[Local Models] end subgraph "Infrastructure" CB[Circuit Breakers] CM[Cache Manager] MON[Monitoring] end CLI --> AC API --> AC AC --> SO AC --> CP SO --> TR SO --> MH AC --> LG MH --> FS MH --> DB MH --> CT LG --> OAI LG --> ANT LG --> LOC TR --> CB MH --> CB LG --> CB SO --> CM CB --> MON CM --> MON class CLI,API pastelBlue class AC,SO,CP pastelPurple class TR,MH,LG pastelGreen class FS,DB,CT pastelYellow class OAI,ANT,LOC pastelOrange class CB,CM,MON pastelPink </div> </section> <section class="section"> <h2> <svg class="icon" viewBox="0 0 24 24"> <path d="M20 6h-2.18c.11-.31.18-.65.18-1a2.996 2.996 0 00-5.5-1.65l-.5.67-.5-.68C10.96 2.54 10.05 2 9 2 7.34 2 6 3.34 6 5c0 .35.07.69.18 1H4c-1.11 0-1.99.89-1.99 2L2 19c0 1.11.89 2 2 2h16c1.11 0 2-.89 2-2V8c0-1.11-.89-2-2-2zm-5-2c.55 0 1 .45 1 1s-.45 1-1 1-1-.45-1-1 .45-1 1-1zM9 4c.55 0 1 .45 1 1s-.45 1-1 1-1-.45-1-1 .45-1 1-1z"/> </svg> Core Technologies </h2> <h3>Technology Stack</h3> <div class="tech-stack"> <span class="tech-badge">Python 3.11+</span> <span class="tech-badge">FastAPI</span> <span class="tech-badge">TypeScript</span> <span class="tech-badge">Redis</span> <span class="tech-badge">FAISS</span> <span class="tech-badge">Docker</span> <span class="tech-badge">OpenTelemetry</span> <span class="tech-badge">Prometheus</span> <span class="tech-badge">Grafana</span> <span class="tech-badge">Sentence Transformers</span> </div> <h3>Key Implementations</h3> <div class="code-block"> # Semantic Tool Discovery Formula score = (s_server × s_tool) × max(s_server, s_tool) # Multi-Layer Caching Strategy L1: In-memory LRU (sub-millisecond) L2: Redis distributed cache (shared state) L3: Semantic similarity cache (95% threshold) # Circuit Breaker States CLOSED → OPEN → HALF_OPEN → DECONSTRUCTED </div> </section> <section class="section"> <h2> <svg class="icon" viewBox="0 0 24 24"> <path d="M12 2l3.09 6.26L22 9.27l-5 4.87 1.18 6.88L12 17.77l-6.18 3.25L7 14.14 2 9.27l6.91-1.01L12 2z"/> </svg> Unique Features </h2> <div class="feature-grid"> <div class="feature-card"> <h4>MCP-Zero Active Discovery</h4> <p> LLMs autonomously request tools instead of passive selection, reducing token usage by 98% while improving accuracy. </p> </div> <div class="feature-card"> <h4>Hierarchical Semantic Routing</h4> <p> Two-stage routing: server-level filtering followed by tool-level ranking for optimal tool selection from hundreds of options. </p> </div> <div class="feature-card"> <h4>Tool Chaining with CHAIN_RESULT</h4> <p> Sequential tool execution with automatic result passing, enabling complex workflows with minimal token overhead. </p> </div> <div class="feature-card"> <h4>Elastic Circuit De-Constructor</h4> <p> Advanced circuit breaker with "deconstructed" state for graceful degradation while maintaining partial functionality. </p> </div> <div class="feature-card"> <h4>Context Window Optimizer</h4> <p> Intelligent context compression with priority scoring and automatic summarization when approaching token limits. </p> </div> <div class="feature-card"> <h4>Predictive Tool Pre-loading</h4> <p> ML-based prediction of likely tool usage based on conversation patterns, reducing latency for anticipated operations. </p> </div> </div> </section> <section class="section"> <h2> <svg class="icon" viewBox="0 0 24 24"> <path d="M16 11c1.66 0 2.99-1.34 2.99-3S17.66 5 16 5c-1.66 0-3 1.34-3 3s1.34 3 3 3zm-8 0c1.66 0 2.99-1.34 2.99-3S9.66 5 8 5C6.34 5 5 6.34 5 8s1.34 3 3 3zm0 2c-2.33 0-7 1.17-7 3.5V19h14v-2.5c0-2.33-4.67-3.5-7-3.5zm8 0c-.29 0-.62.02-.97.05 1.16.84 1.97 1.97 1.97 3.45V19h6v-2.5c0-2.33-4.67-3.5-7-3.5z"/> </svg> Implementation Roadmap </h2> <div class="timeline"> <div class="timeline-item"> <h4>Phase 1: Core Infrastructure (Week 1-2)</h4> <ul> <li>Set up project structure and Docker environment</li> <li>Implement base MCP client/server infrastructure</li> <li>Create circuit breaker and caching foundations</li> <li>Establish monitoring with Prometheus/Grafana</li> </ul> </div> <div class="timeline-item"> <h4>Phase 2: Intelligent Orchestration (Week 3-4)</h4> <ul> <li>Build semantic tool orchestrator with FAISS</li> <li>Implement tool versioning and capability graph</li> <li>Create multi-LLM gateway with routing logic</li> <li>Add predictive pre-loading mechanisms</li> </ul> </div> <div class="timeline-item"> <h4>Phase 3: Advanced Features (Week 5-6)</h4> <ul> <li>Implement MCP Tool Chainer for workflows</li> <li>Add context window optimization</li> <li>Create terminal interface with rich UI</li> <li>Build comprehensive test suite</li> </ul> </div> <div class="timeline-item"> <h4>Phase 4: Production Readiness (Week 7-8)</h4> <ul> <li>Performance optimization and benchmarking</li> <li>Security hardening and authentication</li> <li>Documentation and deployment guides</li> <li>Load testing and scalability verification</li> </ul> </div> </div> </section> <section class="section"> <h2> <svg class="icon" viewBox="0 0 24 24"> <path d="M19 3h-4.18C14.4 1.84 13.3 1 12 1c-1.3 0-2.4.84-2.82 2H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zm-7 0c.55 0 1 .45 1 1s-.45 1-1 1-1-.45-1-1 .45-1 1-1zm2 14H7v-2h7v2zm3-4H7v-2h10v2zm0-4H7V7h10v2z"/> </svg> Project Structure </h2> <div class="code-block"> LocalMCP/ ├── docker-compose.yml # Container orchestration ├── requirements.txt # Python dependencies ├── package.json # Node.js dependencies │ ├── src/ │ ├── core/ # Core components │ │ ├── orchestrator.py # Semantic tool orchestration │ │ ├── circuit_breaker.py │ │ ├── cache_manager.py │ │ └── context_optimizer.py │ │ │ ├── mcp/ # MCP implementation │ │ ├── client.py │ │ ├── server.py │ │ ├── tool_registry.py │ │ └── protocol_handler.py │ │ │ ├── llm/ # Multi-LLM support │ │ ├── gateway.py │ │ ├── router.py │ │ └── providers/ │ │ │ ├── terminal/ # Terminal interface │ │ ├── interface.py │ │ ├── agent.py │ │ └── commands.py │ │ │ └── monitoring/ # Observability │ ├── metrics.py │ ├── tracing.py │ └── health.py │ ├── mcp_servers/ # Custom MCP servers ├── config/ # Configuration files ├── tests/ # Test suites └── scripts/ # Utility scripts </div> </section> <section class="section"> <h2> <svg class="icon" viewBox="0 0 24 24"> <path d="M11 17h2v-6h-2v6zm1-15C6.48 2 2 6.48 2 12s4.48 10 10 10 10-4.48 10-10S17.52 2 12 2zm0 18c-4.41 0-8-3.59-8-8s3.59-8 8-8 8 3.59 8 8-3.59 8-8 8zM11 9h2V7h-2v2z"/> </svg> Risk Mitigation </h2> <div class="feature-grid"> <div class="feature-card"> <h4>Scalability Risks</h4> <p> Mitigated through horizontal scaling, distributed caching, and resource-aware execution planning. </p> </div> <div class="feature-card"> <h4>Security Concerns</h4> <p> OAuth2/OIDC authentication, sandboxed tool execution, and comprehensive audit logging. </p> </div> <div class="feature-card"> <h4>Performance Degradation</h4> <p> Circuit breakers, graceful degradation patterns, and fallback mechanisms ensure resilience. </p> </div> </div> </section> <section class="section cta-section"> <h2>Ready to Build the Future of AI Agents?</h2> <p style="margin: 20px 0; font-size: 1.1em; color: #CBD5E0;"> LocalMCP represents the state-of-the-art in MCP-based AI agent architectures, implementing proven patterns from extensive research to deliver enterprise-grade performance, reliability, and scalability. </p> <div> <a href="#" class="cta-button" onclick="approveProject()">Approve Project</a> <a href="#" class="cta-button" onclick="requestChanges()">Request Changes</a> </div> </section> </div> <script> mermaid.initialize({ startOnLoad: true, theme: 'dark', themeVariables: { primaryColor: '#2D3748', primaryTextColor: '#F7FAFC', primaryBorderColor: '#B794F4', lineColor: '#FBB6CE', secondaryColor: '#90CDF4', tertiaryColor: '#9AE6B4', background: '#1A202C', mainBkg: '#2D3748', secondBkg: '#4A5568', tertiaryBkg: '#718096', primaryBoxBkg: '#2D3748', primaryBoxBorder: '#B794F4', nodeBkg: '#2D3748', nodeTextColor: '#F7FAFC', fontSize: '16px', fontFamily: 'Inter, system-ui, sans-serif' } }); function approveProject() { alert('Project approved! Ready to begin implementation.'); } function requestChanges() { const changes = prompt('What changes would you like to make to the project?'); if (changes) { alert('Changes noted: ' + changes); } } </script> </body> </html>

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/leolech14/LocalMCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server