Skip to main content
Glama

LocalMCP

by leolech14
MIT License
implementation_guide.md10.6 kB
# LocalMCP Implementation Guide ## What We Need to Make It Real ### 1. Prerequisites & Environment Setup #### System Requirements - **Python 3.11+** (for async support and performance) - **Node.js 18+** (for MCP servers) - **Docker & Docker Compose** (for Redis, monitoring stack) - **GPU (optional)** for local LLMs - **8GB+ RAM** minimum, 16GB recommended #### API Keys & Accounts ```bash # Required API keys (store in .env) OPENAI_API_KEY=sk-... ANTHROPIC_API_KEY=sk-ant-... GOOGLE_API_KEY=... # Optional HUGGINGFACE_TOKEN=... # For embeddings # Optional services LANGSMITH_API_KEY=... # For tracing OPENROUTER_API_KEY=... # For unified LLM access ``` ### 2. Core Dependencies Installation ```bash # Clone and setup git clone https://github.com/yourusername/LocalMCP.git cd LocalMCP # Python environment python -m venv venv source venv/bin/activate # or `venv\Scripts\activate` on Windows pip install -r requirements.txt # Node.js dependencies for MCP servers npm install # Start infrastructure services docker-compose up -d ``` ### 3. MCP Server Setup #### Install Official MCP Servers ```bash # Filesystem MCP server npx @modelcontextprotocol/create-server filesystem ./mcp_servers/filesystem # PostgreSQL MCP server npx @modelcontextprotocol/create-server postgresql ./mcp_servers/database # Custom tool server template npx @modelcontextprotocol/create-server custom ./mcp_servers/custom_tools ``` ### 4. Vector Database Setup ```bash # Option 1: Chroma (embedded) pip install chromadb # Option 2: Qdrant (more scalable) docker run -p 6333:6333 qdrant/qdrant # Option 3: Pinecone (cloud) pip install pinecone-client ``` ### 5. Local LLM Setup (Optional) ```bash # Option 1: Ollama curl -fsSL https://ollama.ai/install.sh | sh ollama pull llama2 ollama pull codellama # Option 2: LocalAI curl https://localai.io/install.sh | sh local-ai run huggingface://TheBloke/CodeLlama-7B-GGUF/codellama-7b.Q4_K_M.gguf # Option 3: LM Studio GUI # Download from https://lmstudio.ai/ ``` ## How LocalMCP Works Modularly with Other Systems ### 1. API-First Architecture LocalMCP exposes multiple interfaces for integration: ```python # REST API for external systems from fastapi import FastAPI from localmcp import MCPAgent app = FastAPI() agent = MCPAgent() @app.post("/api/v1/execute") async def execute_command(request: CommandRequest): """Execute commands via HTTP API""" result = await agent.execute(request.command, request.context) return {"result": result, "tools_used": result.tools} @app.websocket("/ws") async def websocket_endpoint(websocket: WebSocket): """Real-time streaming interface""" await websocket.accept() async for message in websocket: result = await agent.stream_execute(message) await websocket.send_json(result) ``` ### 2. Plugin Architecture ```python # localmcp/plugins/base.py class MCPPlugin: """Base class for LocalMCP plugins""" async def on_tool_discovery(self, tools: List[Tool]): """Called when new tools are discovered""" pass async def on_pre_execution(self, tool_call: ToolCall): """Called before tool execution""" pass async def on_post_execution(self, result: ToolResult): """Called after tool execution""" pass # Example plugin: Slack integration class SlackPlugin(MCPPlugin): async def on_post_execution(self, result: ToolResult): if result.important: await self.slack_client.post_message( channel="#ai-notifications", text=f"Tool {result.tool_name} completed: {result.summary}" ) ``` ### 3. Message Queue Integration ```python # Celery integration for async task processing from celery import Celery from localmcp import MCPOrchestrator celery_app = Celery('localmcp', broker='redis://localhost:6379') @celery_app.task def process_workflow(workflow_definition: dict): """Process MCP workflows asynchronously""" orchestrator = MCPOrchestrator() return orchestrator.execute_workflow(workflow_definition) # Kafka integration for event streaming from aiokafka import AIOKafkaConsumer, AIOKafkaProducer class MCPEventStreamer: async def stream_tool_events(self): producer = AIOKafkaProducer(bootstrap_servers='localhost:9092') await producer.start() async for event in self.mcp_agent.event_stream(): await producer.send('mcp-events', event.to_json()) ``` ### 4. Database Integration ```python # SQLAlchemy models for storing MCP data from sqlalchemy import Column, String, JSON, DateTime from sqlalchemy.ext.declarative import declarative_base Base = declarative_base() class ToolExecution(Base): __tablename__ = 'tool_executions' id = Column(String, primary_key=True) tool_id = Column(String, index=True) input_params = Column(JSON) output_result = Column(JSON) execution_time = Column(Float) timestamp = Column(DateTime, default=datetime.utcnow) # MongoDB integration for unstructured data from motor.motor_asyncio import AsyncIOMotorClient class MCPDocumentStore: def __init__(self): self.client = AsyncIOMotorClient('mongodb://localhost:27017') self.db = self.client.localmcp async def store_conversation(self, conversation: dict): await self.db.conversations.insert_one(conversation) ``` ### 5. Integration Patterns #### A. Sidecar Pattern ```yaml # docker-compose.yml services: your-app: image: your-app:latest localmcp-sidecar: image: localmcp:latest environment: - API_MODE=sidecar - PARENT_SERVICE=your-app volumes: - ./mcp-config:/config ``` #### B. Gateway Pattern ```nginx # nginx.conf - Route MCP requests through API gateway location /api/mcp/ { proxy_pass http://localmcp:8000/; proxy_set_header X-MCP-Auth $http_authorization; } location /api/v1/ { proxy_pass http://your-main-api:3000/; } ``` #### C. Event-Driven Integration ```python # Integrate with existing event systems class MCPEventBridge: def __init__(self, event_bus): self.event_bus = event_bus self.mcp_agent = MCPAgent() async def handle_event(self, event): if event.type == "PROCESS_DOCUMENT": # Use MCP tools to process result = await self.mcp_agent.execute( "extract key information from document", context={"document_id": event.document_id} ) # Publish result await self.event_bus.publish( "DOCUMENT_PROCESSED", {"document_id": event.document_id, "extracted": result} ) ``` ### 6. Authentication & Authorization ```python # JWT-based auth for API access from fastapi import Depends, HTTPException from jose import JWTError, jwt class MCPAuthMiddleware: async def verify_token(self, token: str): try: payload = jwt.decode(token, SECRET_KEY, algorithms=["HS256"]) return payload.get("sub") except JWTError: raise HTTPException(status_code=401) async def check_tool_permission(self, user_id: str, tool_id: str): # Check if user has permission to use specific MCP tool permissions = await self.get_user_permissions(user_id) return tool_id in permissions.allowed_tools ``` ### 7. Monitoring Integration ```python # Datadog integration from datadog import initialize, statsd class MCPMetricsCollector: def __init__(self): initialize(api_key='YOUR_DD_API_KEY') async def record_tool_execution(self, tool_id: str, duration: float): statsd.histogram('mcp.tool.execution_time', duration, tags=[f'tool:{tool_id}']) statsd.increment('mcp.tool.executions', tags=[f'tool:{tool_id}']) # Grafana Loki for log aggregation import logging from python_loki import LoggingHandler handler = LoggingHandler( url="http://localhost:3100/loki/api/v1/push", tags={"application": "localmcp"}, ) logging.getLogger().addHandler(handler) ``` ### 8. SDK for Other Languages ```typescript // TypeScript/JavaScript SDK import { MCPClient } from '@localmcp/sdk'; const client = new MCPClient({ endpoint: 'http://localhost:8000', apiKey: process.env.MCP_API_KEY }); // Execute with streaming const stream = await client.executeStream({ command: 'analyze this codebase', context: { path: './src' } }); for await (const chunk of stream) { console.log(chunk.tool, chunk.result); } ``` ```go // Go SDK package main import "github.com/localmcp/go-sdk" client := localmcp.NewClient( localmcp.WithEndpoint("http://localhost:8000"), localmcp.WithAPIKey(os.Getenv("MCP_API_KEY")), ) result, err := client.Execute(ctx, &localmcp.ExecuteRequest{ Command: "generate API documentation", Context: map[string]interface{}{"path": "./api"}, }) ``` ## Deployment Options ### 1. Kubernetes Deployment ```yaml # k8s/deployment.yaml apiVersion: apps/v1 kind: Deployment metadata: name: localmcp spec: replicas: 3 selector: matchLabels: app: localmcp template: metadata: labels: app: localmcp spec: containers: - name: localmcp image: localmcp:latest ports: - containerPort: 8000 env: - name: REDIS_URL value: redis://redis:6379 resources: requests: memory: "1Gi" cpu: "500m" limits: memory: "2Gi" cpu: "1000m" ``` ### 2. Serverless Deployment ```python # AWS Lambda handler import json from localmcp import MCPAgent agent = MCPAgent() def lambda_handler(event, context): command = event.get('command') result = agent.execute_sync(command) return { 'statusCode': 200, 'body': json.dumps(result) } ``` ### 3. Edge Deployment ```dockerfile # Lightweight container for edge devices FROM python:3.11-slim RUN pip install localmcp-edge CMD ["localmcp-edge", "--mode", "minimal"] ``` ## Next Steps 1. **Start with Core**: Implement the orchestrator and circuit breaker first 2. **Add MCP Servers**: Begin with filesystem and database servers 3. **Integrate LLMs**: Start with one provider, then add others 4. **Build APIs**: Create REST and WebSocket interfaces 5. **Add Monitoring**: Implement metrics and tracing 6. **Create Plugins**: Build integrations for your specific needs 7. **Deploy**: Start with Docker, scale to Kubernetes as needed The modular architecture ensures you can start small and expand based on your needs!

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/leolech14/LocalMCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server