Skip to main content
Glama

LocalMCP

by leolech14
MIT License
knowledge_integration.html20 kB
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>LocalMCP - Knowledge Base Integration Plan</title> <script src="https://cdn.jsdelivr.net/npm/mermaid@10/dist/mermaid.min.js"></script> <style> body { background-color: #0F1419; color: #E2E8F0; font-family: 'Inter', system-ui, sans-serif; padding: 40px; line-height: 1.8; } h1 { text-align: center; background: linear-gradient(135deg, #B794F4 0%, #F687B3 100%); -webkit-background-clip: text; -webkit-text-fill-color: transparent; font-size: 3em; margin-bottom: 20px; } .subtitle { text-align: center; font-size: 1.3em; color: #90CDF4; margin-bottom: 60px; font-weight: 300; } .mermaid { background-color: #1A202C; padding: 40px; border-radius: 12px; margin: 40px auto; border: 3px solid #2D3748; box-shadow: 0 8px 16px rgba(0,0,0,0.6); max-width: 1400px; } .section { background-color: #1A202C; padding: 40px; border-radius: 12px; margin: 40px auto; max-width: 1400px; border: 2px solid #2D3748; box-shadow: 0 4px 8px rgba(0,0,0,0.4); } h2 { color: #9AE6B4; margin-bottom: 30px; font-size: 2em; display: flex; align-items: center; gap: 15px; } h3 { color: #F687B3; margin: 30px 0 20px; font-size: 1.5em; } .integration-grid { display: grid; grid-template-columns: repeat(auto-fit, minmax(350px, 1fr)); gap: 25px; margin: 30px 0; } .integration-card { background-color: #2D3748; padding: 30px; border-radius: 10px; border: 1px solid #4A5568; transition: transform 0.2s, box-shadow 0.2s; } .integration-card:hover { transform: translateY(-2px); box-shadow: 0 6px 12px rgba(0,0,0,0.4); } .integration-card h4 { color: #90CDF4; margin-bottom: 15px; font-size: 1.3em; } .code-block { background-color: #1A202C; border: 1px solid #4A5568; border-radius: 8px; padding: 25px; margin: 20px 0; overflow-x: auto; font-family: 'Consolas', 'Monaco', monospace; color: #F7FAFC; font-size: 0.95em; line-height: 1.6; } .feature-list { list-style: none; padding: 0; } .feature-list li { padding: 15px 0; border-bottom: 1px solid #2D3748; display: flex; align-items: flex-start; gap: 15px; } .feature-list li:last-child { border-bottom: none; } .feature-icon { color: #9AE6B4; font-size: 1.5em; flex-shrink: 0; } .stats-grid { display: grid; grid-template-columns: repeat(4, 1fr); gap: 20px; margin: 30px 0; } .stat-card { background-color: #2D3748; padding: 25px; border-radius: 8px; text-align: center; border: 1px solid #4A5568; } .stat-value { font-size: 2.5em; font-weight: 700; color: #F687B3; display: block; margin-bottom: 10px; } .stat-label { color: #CBD5E0; font-size: 0.9em; text-transform: uppercase; letter-spacing: 0.05em; } .icon { width: 24px; height: 24px; fill: currentColor; } .benefit-box { background-color: #2D3748; border-left: 4px solid #9AE6B4; padding: 20px; margin: 20px 0; border-radius: 4px; } .benefit-box h4 { color: #9AE6B4; margin-bottom: 10px; } @media (max-width: 768px) { .stats-grid { grid-template-columns: repeat(2, 1fr); } h1 { font-size: 2.2em; } .section { padding: 25px; } } </style> </head> <body> <h1>LocalMCP × Knowledge Base</h1> <p class="subtitle">Integrating LocalMCP with Your Existing AI Knowledge Infrastructure</p> <div class="mermaid"> graph TB subgraph "Existing Knowledge Base" KB["/02_knowledge/"] SS["Specialist System<br/>11 Core Concepts<br/>4-Layer Architecture"] LIB["Librarian<br/>17 Document Pairs<br/>88 Searchable Chunks"] KB --> SS KB --> LIB end subgraph "LocalMCP Integration" MCP["LocalMCP Core"] KS["Knowledge MCP Server"] SO["Semantic Orchestrator"] CACHE["Intelligent Cache"] end subgraph "Enhanced Capabilities" NLP["Natural Language Interface"] CTX["Context-Aware Responses"] LEARN["Continuous Learning"] MULTI["Multi-Modal Understanding"] end subgraph "MCP Tools" T1["mcp_knowledge_search"] T2["mcp_concept_explain"] T3["mcp_implementation_guide"] T4["mcp_learning_path"] end SS -.-> KS LIB -.-> KS KS --> MCP MCP --> SO MCP --> CACHE SO --> T1 SO --> T2 SO --> T3 SO --> T4 MCP --> NLP MCP --> CTX MCP --> LEARN MCP --> MULTI style KB fill:#E9D8FD,stroke:#B794F4,stroke-width:3px style SS fill:#FED7E2,stroke:#F687B3,stroke-width:2px style LIB fill:#BEE3F8,stroke:#63B3ED,stroke-width:2px style MCP fill:#C6F6D5,stroke:#68D391,stroke-width:3px style KS fill:#FEFCBF,stroke:#F6E05E,stroke-width:2px style SO fill:#FED7AA,stroke:#F6AD55,stroke-width:2px style CACHE fill:#E0E7FF,stroke:#A5B4FC,stroke-width:2px </div> <div class="section"> <h2> <svg class="icon" viewBox="0 0 24 24"> <path d="M12 2C6.48 2 2 6.48 2 12s4.48 10 10 10 10-4.48 10-10S17.52 2 12 2zm-2 15l-5-5 1.41-1.41L10 14.17l7.59-7.59L19 8l-9 9z"/> </svg> Integration Overview </h2> <p>Your existing knowledge base at <code>/Users/lech/02_knowledge/</code> provides a perfect foundation for LocalMCP's semantic capabilities. By creating a custom MCP server that interfaces with both your Specialist System and Librarian, LocalMCP can leverage this rich knowledge while adding advanced features.</p> <div class="stats-grid"> <div class="stat-card"> <span class="stat-value">11</span> <span class="stat-label">Core Concepts</span> </div> <div class="stat-card"> <span class="stat-value">88</span> <span class="stat-label">Searchable Chunks</span> </div> <div class="stat-card"> <span class="stat-value">17</span> <span class="stat-label">Document Pairs</span> </div> <div class="stat-card"> <span class="stat-value">∞</span> <span class="stat-label">Possibilities</span> </div> </div> </div> <div class="section"> <h2> <svg class="icon" viewBox="0 0 24 24"> <path d="M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z"/> </svg> Integration Architecture </h2> <h3>1. Knowledge MCP Server</h3> <p>A custom MCP server that wraps your existing knowledge base interfaces:</p> <div class="code-block"> # /Users/lech/LocalMCP/mcp_servers/knowledge_server.py import sys sys.path.append('/Users/lech/02_knowledge') from specialist_system.retrieval_interface import SpecialistKnowledgeRetriever from librarian.librarian_retrieval import LibrarianRetrieval, LibrarianAssistant from mcp.server import MCPServer, Tool class KnowledgeMCPServer(MCPServer): def __init__(self): super().__init__("knowledge-base") self.specialist = SpecialistKnowledgeRetriever() self.librarian = LibrarianRetrieval() self.assistant = LibrarianAssistant() def get_tools(self): return [ Tool( name="search_knowledge", description="Search across all knowledge sources", parameters={ "query": {"type": "string", "required": True}, "source": {"type": "string", "enum": ["all", "specialist", "librarian"]}, "max_results": {"type": "integer", "default": 5} } ), Tool( name="get_concept", description="Get detailed information about a specialist concept", parameters={ "concept": {"type": "string", "required": True} } ), Tool( name="build_implementation_guide", description="Generate implementation guide based on knowledge", parameters={ "topic": {"type": "string", "required": True}, "level": {"type": "string", "enum": ["beginner", "intermediate", "advanced"]} } ) ]</div> <h3>2. Enhanced Semantic Orchestration</h3> <p>LocalMCP's semantic orchestrator gains special awareness of your knowledge domains:</p> <div class="code-block"> # Enhanced orchestrator with knowledge-aware routing class KnowledgeAwareOrchestrator(SemanticOrchestrator): def __init__(self, knowledge_server): super().__init__() self.knowledge_server = knowledge_server async def route_query(self, query: str) -> ToolSelection: # Check if query relates to specialist concepts concepts = await self.extract_concepts(query) if concepts: # Prioritize specialist system tools return self.select_specialist_tools(concepts) # Check for document-based queries if self.is_documentation_query(query): # Use librarian tools return self.select_librarian_tools(query) # Default semantic routing return await super().route_query(query)</div> </div> <div class="section"> <h2> <svg class="icon" viewBox="0 0 24 24"> <path d="M7 18c-1.1 0-1.99.9-1.99 2S5.9 22 7 22s2-.9 2-2-.9-2-2-2zM1 2v2h2l3.6 7.59-1.35 2.45c-.16.28-.25.61-.25.96 0 1.1.9 2 2 2h12v-2H7.42c-.14 0-.25-.11-.25-.25l.03-.12.9-1.63h7.45c.75 0 1.41-.41 1.75-1.03l3.58-6.49c.08-.14.12-.31.12-.48 0-.55-.45-1-1-1H5.21l-.94-2H1zm16 16c-1.1 0-1.99.9-1.99 2s.89 2 1.99 2 2-.9 2-2-.9-2-2-2z"/> </svg> Key Integration Features </h2> <div class="integration-grid"> <div class="integration-card"> <h4>Unified Knowledge Access</h4> <p>Single interface to query both specialist concepts and document library through natural language.</p> <div class="code-block"> # Example usage result = await mcp.execute( "How do I implement hybrid retrieval for a Natural AI Specialist?" ) # Automatically uses both knowledge sources</div> </div> <div class="integration-card"> <h4>Context-Aware Responses</h4> <p>LocalMCP builds rich context by combining specialist insights with relevant documentation.</p> <div class="code-block"> # Combines: - Specialist concept definitions - Implementation examples - Related documents - Hardware optimizations → Comprehensive answer</div> </div> <div class="integration-card"> <h4>Learning Path Integration</h4> <p>Automatically generates learning sequences based on your existing knowledge structure.</p> <div class="code-block"> # Leverages your learning paths path = await mcp.execute( "Create a learning path for building MCP servers" ) # Uses librarian sequence + concepts</div> </div> <div class="integration-card"> <h4>Semantic Caching</h4> <p>Cache responses based on concept similarity, dramatically improving performance.</p> <div class="code-block"> # If asked about "RRF algorithm" # Can return cached "Reciprocal Rank Fusion" # Based on semantic similarity > 0.95</div> </div> <div class="integration-card"> <h4>Multi-Modal Enhancement</h4> <p>Combine your text knowledge with diagrams, code examples, and visual explanations.</p> <div class="code-block"> # Generates Mermaid diagrams # from architecture descriptions diagram = await mcp.visualize( concept="4-Layer Architecture" )</div> </div> <div class="integration-card"> <h4>Continuous Learning</h4> <p>LocalMCP can update your knowledge base with new insights discovered during interactions.</p> <div class="code-block"> # Discovers new implementation pattern await knowledge_server.add_insight({ "type": "implementation_pattern", "concept": "MCP Tool Chaining", "example": discovered_pattern })</div> </div> </div> </div> <div class="section"> <h2> <svg class="icon" viewBox="0 0 24 24"> <path d="M9 11H7v2h2v-2zm4 0h-2v2h2v-2zm4 0h-2v2h2v-2zm2-7h-1V2h-2v2H8V2H6v2H5c-1.11 0-1.99.9-1.99 2L3 20c0 1.1.89 2 2 2h14c1.1 0 2-.9 2-2V6c0-1.1-.9-2-2-2zm0 16H5V9h14v11z"/> </svg> Implementation Timeline </h2> <h3>Phase 1: Knowledge MCP Server (Days 1-3)</h3> <ul class="feature-list"> <li> <span class="feature-icon">✓</span> <div> <strong>Wrap existing interfaces</strong> - Create MCP server that exposes your retrieval interfaces as MCP tools </div> </li> <li> <span class="feature-icon">✓</span> <div> <strong>Implement search tools</strong> - Unified search, concept retrieval, and context building </div> </li> <li> <span class="feature-icon">✓</span> <div> <strong>Add caching layer</strong> - Integrate with LocalMCP's multi-layer cache </div> </li> </ul> <h3>Phase 2: Enhanced Orchestration (Days 4-5)</h3> <ul class="feature-list"> <li> <span class="feature-icon">✓</span> <div> <strong>Knowledge-aware routing</strong> - Teach orchestrator about your knowledge domains </div> </li> <li> <span class="feature-icon">✓</span> <div> <strong>Concept extraction</strong> - Identify specialist concepts in queries </div> </li> <li> <span class="feature-icon">✓</span> <div> <strong>Semantic similarity</strong> - Use your concept relationships for better tool selection </div> </li> </ul> <h3>Phase 3: Advanced Features (Days 6-7)</h3> <ul class="feature-list"> <li> <span class="feature-icon">✓</span> <div> <strong>Learning path generation</strong> - Dynamic paths based on user queries </div> </li> <li> <span class="feature-icon">✓</span> <div> <strong>Visual explanations</strong> - Auto-generate diagrams from concepts </div> </li> <li> <span class="feature-icon">✓</span> <div> <strong>Knowledge updates</strong> - Feed discoveries back into your KB </div> </li> </ul> </div> <div class="section"> <h2> <svg class="icon" viewBox="0 0 24 24"> <path d="M12 2l3.09 6.26L22 9.27l-5 4.87 1.18 6.88L12 17.77l-6.18 3.25L7 14.14 2 9.27l6.91-1.01L12 2z"/> </svg> Expected Benefits </h2> <div class="benefit-box"> <h4>🚀 Instant Knowledge Access</h4> <p>Your 88 document chunks and 11 core concepts become instantly accessible through natural language, with sub-second response times thanks to semantic caching.</p> </div> <div class="benefit-box"> <h4>🧠 Intelligent Context Building</h4> <p>LocalMCP automatically combines specialist concepts with relevant documentation, creating comprehensive contexts that rival human experts.</p> </div> <div class="benefit-box"> <h4>📈 Continuous Improvement</h4> <p>Every interaction potentially enriches your knowledge base with new patterns, examples, and insights discovered by the AI agent.</p> </div> <div class="benefit-box"> <h4>🔗 Seamless Integration</h4> <p>Your existing Python interfaces work as-is. LocalMCP wraps them in MCP protocol without requiring any changes to your current code.</p> </div> </div> <script> mermaid.initialize({ startOnLoad: true, theme: 'dark', themeVariables: { primaryColor: '#2D3748', primaryTextColor: '#F7FAFC', primaryBorderColor: '#B794F4', lineColor: '#FBB6CE', secondaryColor: '#90CDF4', tertiaryColor: '#9AE6B4', background: '#1A202C', mainBkg: '#2D3748', secondBkg: '#4A5568', tertiaryBkg: '#718096', primaryBoxBkg: '#2D3748', primaryBoxBorder: '#B794F4', nodeBkg: '#2D3748', nodeTextColor: '#F7FAFC', fontSize: '18px', fontFamily: 'Inter, system-ui, sans-serif' } }); </script> </body> </html>

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/leolech14/LocalMCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server