Skip to main content
Glama

MCP Kibela

by kj455
README.md3.72 kB
# mcp-kibela 🗒️ [![smithery badge](https://smithery.ai/badge/@kj455/mcp-kibela)](https://smithery.ai/server/@kj455/mcp-kibela) [![npm version](https://badge.fury.io/js/@kj455%2Fmcp-kibela.svg)](https://www.npmjs.com/package/@kj455/mcp-kibela) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) A Model Context Protocol (MCP) server implementation that enables AI assistants to search and reference Kibela content. This setup allows AI models like Claude to securely access information stored in Kibela. ## Features 🚀 The mcp-kibela server provides the following features: - **Note Search**: Search Kibela notes by keywords - **My Notes**: Fetch your latest notes - **Note Content**: Get note content and comments by ID - **Note by Path**: Get note content by path - **Create Note**: Create a new note - **Update Note Content**: Update note content by note id --- ## Prerequisites 📋 Before you begin, ensure you have: - Node.js (v18 or higher) - MCP Client (Claude Desktop, Cursor, etc.) - Kibela Access Token ([How to get a token](https://support.kibe.la/hc/ja/articles/360036089931-API%E3%82%A2%E3%82%AF%E3%82%BB%E3%82%B9%E3%83%88%E3%83%BC%E3%82%AF%E3%83%B3%E3%81%AE%E5%8F%96%E5%BE%97%E6%96%B9%E6%B3%95%E3%82%92%E6%95%99%E3%81%88%E3%81%A6%E3%81%8F%E3%81%A0%E3%81%95%E3%81%84)) - Git (if building from source) ## Installation 🛠️ ### Usage with Cursor ```json { "kibela": { "command": "docker", "args": [ "run", "-i", "--rm", "-e", "KIBELA_TEAM", "-e", "KIBELA_TOKEN", "ghcr.io/kj455/mcp-kibela:latest" ], "env": { "KIBELA_TEAM": "your-team-name from https://[team-name].kibe.la", "KIBELA_TOKEN": "your-token" } } } ``` ### Usage with VSCode ```json { "mcp": { "inputs": [ { "type": "promptString", "id": "kibela_team", "description": "Kibela team name", "password": false }, { "type": "promptString", "id": "kibela_token", "description": "Kibela token", "password": true }, ], "servers": { "kibela": { "command": "docker", "args": [ "run", "-i", "--rm", "-e", "KIBELA_TEAM", "-e", "KIBELA_TOKEN", "ghcr.io/kj455/mcp-kibela:latest" ], "env": { "KIBELA_TEAM": "${input:kibela_team}", "KIBELA_TOKEN": "${input:kibela_token}" } } } } } ``` ### Usage with Claude Desktop ```json { "mcpServers": { "mcp-kibela": { "command": "docker", "args": [ "run", "-i", "--rm", "-e", "KIBELA_TEAM", "-e", "KIBELA_TOKEN", "ghcr.io/kj455/mcp-kibela:latest" ], "env": { "KIBELA_TEAM": "your-team-name from https://[team-name].kibe.la", "KIBELA_TOKEN": "your-token" } } } } ``` ### Using Smithery ```bash npx -y @smithery/cli install @kj455/mcp-kibela --client claude ``` ## Environment Variables The following environment variables are required: - `KIBELA_TEAM`: Your Kibela team name (required). You can find it from the URL of your Kibela team page. e.g. https://[team-name].kibe.la - `KIBELA_TOKEN`: Your Kibela API token (required) ## Contributing Any contributions are welcome! ## Development 1. Use `npm run build:watch` to build the project in watch mode. ```bash npm run build:watch ``` 2. Use `npx @modelcontextprotocol/inspector` to inspect the MCP server. ```bash npx @modelcontextprotocol/inspector node /path/to/mcp-kibela/dist/index.js ``` ## License 📄 MIT

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/kj455/mcp-kibela'

If you have feedback or need assistance with the MCP directory API, please join our Discord server