YouTube Toolbox

Integrations

  • Leverages Google Cloud Platform services, specifically requiring YouTube Data API v3 credentials for authentication and access to YouTube data.

  • Provides tools for interacting with YouTube, including video searching, transcript extraction, comment retrieval, related video discovery, trending video lists, channel information retrieval, and transcript analysis with filtering and summarization capabilities.

py-mcp-youtube-toolbox

An MCP server that provides AI assistants with powerful tools to interact with YouTube, including video searching, transcript extraction, comment retrieval, and more.

Overview

py-mcp-youtube-toolbox provides the following YouTube-related functionalities:

  • Search YouTube videos with advanced filtering options
  • Get detailed information about videos and channels
  • Retrieve video comments with sorting options
  • Extract video transcripts and captions in multiple languages
  • Find related videos for a given video
  • Get trending videos by region
  • Generate summaries of video content based on transcripts
  • Advanced transcript analysis with filtering, searching, and multi-video capabilities

Table of Contents

Prerequisites

  1. Python: Install Python 3.12 or higher
  2. YouTube API Key:
    • Go to Google Cloud Console
    • Create a new project or select an existing one
    • Enable the YouTube Data API v3:
      1. Go to "APIs & Services" > "Library"
      2. Search for and enable "YouTube Data API v3"
    • Create credentials:
      1. Go to "APIs & Services" > "Credentials"
      2. Click "Create Credentials" > "API key"
      3. Note down your API key

Installation

Git Clone
git clone https://github.com/jikime/py-mcp-youtube-toolbox.git cd py-mcp-youtube-toolbox
Configuration
  1. Install UV package manager:
curl -LsSf https://astral.sh/uv/install.sh | sh
  1. Create and activate virtual environment:
uv venv -p 3.12 source .venv/bin/activate # On MacOS/Linux # or .venv\Scripts\activate # On Windows
  1. Install dependencies:
uv pip install -r requirements.txt
  1. Environment variables:
cp env.example .env vi .env # Update with your YouTube API key YOUTUBE_API_KEY=your_youtube_api_key
Using Docker
  1. Build the Docker image:
docker build -t py-mcp-youtube-toolbox .
  1. Run the container:
docker run -e YOUTUBE_API_KEY=your_youtube_api_key py-mcp-youtube-toolbox
Using Local
  1. Run the server:
mcp run server.py
  1. Run the MCP Inspector:
mcp dev server.py

Configure MCP Settings

Add the server configuration to your MCP settings file:

Claude desktop app
  1. To install automatically via Smithery:
npx -y @smithery/cli install @jikime/py-mcp-youtube-toolbox --client claude
  1. To install manually open ~/Library/Application Support/Claude/claude_desktop_config.json

Add this to the mcpServers object:

{ "mcpServers": { "YouTube Toolbox": { "command": "/path/to/bin/uv", "args": [ "--directory", "/path/to/py-mcp-youtube-toolbox", "run", "server.py" ], "env": { "YOUTUBE_API_KEY": "your_youtube_api_key" } } } }
Cursor IDE

open ~/.cursor/mcp.json

Add this to the mcpServers object:

{ "mcpServers": { "YouTube Toolbox": { "command": "/path/to/bin/uv", "args": [ "--directory", "/path/to/py-mcp-youtube-toolbox", "run", "server.py" ], "env": { "YOUTUBE_API_KEY": "your_youtube_api_key" } } } }
for Docker
{ "mcpServers": { "YouTube Toolbox": { "command": "docker", "args": [ "run", "-i", "--rm", "-e", "YOUTUBE_API_KEY=your_youtube_api_key", "py-mcp-youtube-toolbox" ] } } }

Tools Documentation

Video Tools

  • search_videos: Search for YouTube videos with advanced filtering options (channel, duration, region, etc.)
  • get_video_details: Get detailed information about a specific YouTube video (title, channel, views, likes, etc.)
  • get_video_comments: Retrieve comments from a YouTube video with sorting options
  • get_related_videos: Find videos related to a specific YouTube video
  • get_trending_videos: Get trending videos on YouTube by region

Channel Tools

  • get_channel_details: Get detailed information about a YouTube channel (name, subscribers, views, etc.)

Transcript Tools

  • get_video_transcript: Extract transcripts/captions from YouTube videos in specified languages
  • get_video_enhanced_transcript: Advanced transcript extraction with filtering, search, and multi-video capabilities

Prompt Tools

  • transcript_summary: Generate summaries of YouTube video content based on transcripts with customizable options

Resource Tools

  • youtube://available-youtube-tools: Get a list of all available YouTube tools
  • youtube://video/{video_id}: Get detailed information about a specific video
  • youtube://channel/{channel_id}: Get information about a specific channel
  • youtube://transcript/{video_id}?language={language}: Get transcript for a specific video

Development

For local testing, you can use the included client script:

# Example: Search videos uv run client.py search_videos query="MCP" max_results=5 # Example: Get video details uv run client.py get_video_details video_id=zRgAEIoZEVQ # Example: Get channel details uv run client.py get_channel_details channel_id=UCRpOIr-NJpK9S483ge20Pgw # Example: Get video comments uv run client.py get_video_comments video_id=zRgAEIoZEVQ max_results=10 order=time # Example: Get video transcript uv run client.py get_video_transcript video_id=zRgAEIoZEVQ language=ko # Example: Get related videos uv run client.py get_related_videos video_id=zRgAEIoZEVQ max_results=5 # Example: Get trending videos uv run client.py get_trending_videos region_code=ko max_results=10 # Example: Advanced transcript extraction uv run client.py get_video_enhanced_transcript video_ids=zRgAEIoZEVQ language=ko format=timestamped include_metadata=true start_time=100 end_time=200 query=에이전트 case_sensitive=true segment_method=equal segment_count=2 # Example:

License

MIT License

You must be authenticated.

A
security – no known vulnerabilities
F
license - not found
A
quality - confirmed to work

remote-capable server

The server can be hosted and run remotely because it primarily relies on remote services or has no dependency on the local environment.

An MCP server that provides AI assistants with powerful tools to interact with YouTube, including video searching, transcript extraction, comment retrieval, and more.

  1. Overview
    1. Table of Contents
      1. Prerequisites
        1. Installation
          1. Git Clone
          2. Configuration
          3. Using Docker
          4. Using Local
        2. Configure MCP Settings
          1. Claude desktop app
          2. Cursor IDE
          3. for Docker
        3. Tools Documentation
          1. Video Tools
          2. Channel Tools
          3. Transcript Tools
          4. Prompt Tools
          5. Resource Tools
        4. Development
          1. License

            Related MCP Servers

            • -
              security
              F
              license
              -
              quality
              This server allows AI language models to interact with YouTube content through a standardized interface, providing features such as video and channel information retrieval, transcript management, and playlist operations.
              Last updated -
              59
              135
              TypeScript
              • Linux
              • Apple
            • -
              security
              F
              license
              -
              quality
              The MCP Server integrates APIs from the Youtube-Summarizer as tools within the MCP protocol, allowing for local AI application interaction and tool utilization through natural language queries.
              Last updated -
              Python
            • -
              security
              A
              license
              -
              quality
              An MCP server that allows Claude and other AI assistants to interact with the YouTube API, providing tools to search videos/channels and retrieve detailed information about them.
              Last updated -
              1
              JavaScript
              MIT License
              • Apple
            • -
              security
              F
              license
              -
              quality
              A Model Context Protocol server that enables AI assistants to extract transcripts from YouTube videos, allowing AI to analyze and work with video content directly.
              Last updated -
              6
              1
              TypeScript

            View all related MCP servers

            ID: r5s240ekuw