README.md•10.2 kB
# OpenSCAD MCP Server
A Model Context Protocol (MCP) server that enables users to generate 3D models from text descriptions or images, with a focus on creating parametric 3D models using multi-view reconstruction and OpenSCAD.
## Features
- **AI Image Generation**: Generate images from text descriptions using Google Gemini or Venice.ai APIs
- **Multi-View Image Generation**: Create multiple views of the same 3D object for reconstruction
- **Image Approval Workflow**: Review and approve/deny generated images before reconstruction
- **3D Reconstruction**: Convert approved multi-view images into 3D models using CUDA Multi-View Stereo
- **Remote Processing**: Process computationally intensive tasks on remote servers within your LAN
- **OpenSCAD Integration**: Generate parametric 3D models using OpenSCAD
- **Parametric Export**: Export models in formats that preserve parametric properties (CSG, AMF, 3MF, SCAD)
- **3D Printer Discovery**: Optional network printer discovery and direct printing
## Architecture
The server is built using the Python MCP SDK and follows a modular architecture:
```
openscad-mcp-server/
├── src/
│ ├── main.py # Main application
│ ├── main_remote.py # Remote CUDA MVS server
│ ├── ai/ # AI integrations
│ │ ├── gemini_api.py # Google Gemini API for image generation
│ │ └── venice_api.py # Venice.ai API for image generation (optional)
│ ├── models/ # 3D model generation
│ │ ├── cuda_mvs.py # CUDA Multi-View Stereo integration
│ │ └── code_generator.py # OpenSCAD code generation
│ ├── workflow/ # Workflow components
│ │ ├── image_approval.py # Image approval mechanism
│ │ └── multi_view_to_model_pipeline.py # Complete pipeline
│ ├── remote/ # Remote processing
│ │ ├── cuda_mvs_client.py # Client for remote CUDA MVS processing
│ │ ├── cuda_mvs_server.py # Server for remote CUDA MVS processing
│ │ ├── connection_manager.py # Remote connection management
│ │ └── error_handling.py # Error handling for remote processing
│ ├── openscad_wrapper/ # OpenSCAD CLI wrapper
│ ├── visualization/ # Preview generation and web interface
│ ├── utils/ # Utility functions
│ └── printer_discovery/ # 3D printer discovery
├── scad/ # Generated OpenSCAD files
├── output/ # Output files (models, previews)
│ ├── images/ # Generated images
│ ├── multi_view/ # Multi-view images
│ ├── approved_images/ # Approved images for reconstruction
│ └── models/ # Generated 3D models
├── templates/ # Web interface templates
└── static/ # Static files for web interface
```
## Installation
1. Clone the repository:
```
git clone https://github.com/jhacksman/OpenSCAD-MCP-Server.git
cd OpenSCAD-MCP-Server
```
2. Create a virtual environment:
```
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
```
3. Install dependencies:
```
pip install -r requirements.txt
```
4. Install OpenSCAD:
- Ubuntu/Debian: `sudo apt-get install openscad`
- macOS: `brew install openscad`
- Windows: Download from [openscad.org](https://openscad.org/downloads.html)
5. Install CUDA Multi-View Stereo:
```
git clone https://github.com/fixstars/cuda-multi-view-stereo.git
cd cuda-multi-view-stereo
mkdir build && cd build
cmake ..
make
```
6. Set up API keys:
- Create a `.env` file in the root directory
- Add your API keys:
```
GEMINI_API_KEY=your-gemini-api-key
VENICE_API_KEY=your-venice-api-key # Optional
REMOTE_CUDA_MVS_API_KEY=your-remote-api-key # For remote processing
```
## Remote Processing Setup
The server supports remote processing of computationally intensive tasks, particularly CUDA Multi-View Stereo reconstruction. This allows you to offload processing to more powerful machines within your LAN.
### Server Setup (on the machine with CUDA GPU)
1. Install CUDA Multi-View Stereo on the server machine:
```
git clone https://github.com/fixstars/cuda-multi-view-stereo.git
cd cuda-multi-view-stereo
mkdir build && cd build
cmake ..
make
```
2. Start the remote CUDA MVS server:
```
python src/main_remote.py
```
3. The server will automatically advertise itself on the local network using Zeroconf.
### Client Configuration
1. Configure remote processing in your `.env` file:
```
REMOTE_CUDA_MVS_ENABLED=True
REMOTE_CUDA_MVS_USE_LAN_DISCOVERY=True
REMOTE_CUDA_MVS_API_KEY=your-shared-secret-key
```
2. Alternatively, you can specify a server URL directly:
```
REMOTE_CUDA_MVS_ENABLED=True
REMOTE_CUDA_MVS_USE_LAN_DISCOVERY=False
REMOTE_CUDA_MVS_SERVER_URL=http://server-ip:8765
REMOTE_CUDA_MVS_API_KEY=your-shared-secret-key
```
### Remote Processing Features
- **Automatic Server Discovery**: Find CUDA MVS servers on your local network
- **Job Management**: Upload images, track job status, and download results
- **Fault Tolerance**: Automatic retries, circuit breaker pattern, and error tracking
- **Authentication**: Secure API key authentication for all remote operations
- **Health Monitoring**: Continuous server health checks and status reporting
## Usage
1. Start the server:
```
python src/main.py
```
2. The server will start on http://localhost:8000
3. Use the MCP tools to interact with the server:
- **generate_image_gemini**: Generate an image using Google Gemini API
```json
{
"prompt": "A low-poly rabbit with black background",
"model": "gemini-2.0-flash-exp-image-generation"
}
```
- **generate_multi_view_images**: Generate multiple views of the same 3D object
```json
{
"prompt": "A low-poly rabbit",
"num_views": 4
}
```
- **create_3d_model_from_images**: Create a 3D model from approved multi-view images
```json
{
"image_ids": ["view_1", "view_2", "view_3", "view_4"],
"output_name": "rabbit_model"
}
```
- **create_3d_model_from_text**: Complete pipeline from text to 3D model
```json
{
"prompt": "A low-poly rabbit",
"num_views": 4
}
```
- **export_model**: Export a model to a specific format
```json
{
"model_id": "your-model-id",
"format": "obj" // or "stl", "ply", "scad", etc.
}
```
- **discover_remote_cuda_mvs_servers**: Find CUDA MVS servers on your network
```json
{
"timeout": 5
}
```
- **get_remote_job_status**: Check the status of a remote processing job
```json
{
"server_id": "server-id",
"job_id": "job-id"
}
```
- **download_remote_model_result**: Download a completed model from a remote server
```json
{
"server_id": "server-id",
"job_id": "job-id",
"output_name": "model-name"
}
```
- **discover_printers**: Discover 3D printers on the network
```json
{}
```
- **print_model**: Print a model on a connected printer
```json
{
"model_id": "your-model-id",
"printer_id": "your-printer-id"
}
```
## Image Generation Options
The server supports multiple image generation options:
1. **Google Gemini API** (Default): Uses the Gemini 2.0 Flash Experimental model for high-quality image generation
- Supports multi-view generation with consistent style
- Requires a Google Gemini API key
2. **Venice.ai API** (Optional): Alternative image generation service
- Supports various models including flux-dev and fluently-xl
- Requires a Venice.ai API key
3. **User-Provided Images**: Skip image generation and use your own images
- Upload images directly to the server
- Useful for working with existing photographs or renders
## Multi-View Workflow
The server implements a multi-view workflow for 3D reconstruction:
1. **Image Generation**: Generate multiple views of the same 3D object
2. **Image Approval**: Review and approve/deny each generated image
3. **3D Reconstruction**: Convert approved images into a 3D model using CUDA MVS
- Can be processed locally or on a remote server within your LAN
4. **Model Refinement**: Optionally refine the model using OpenSCAD
## Remote Processing Workflow
The remote processing workflow allows you to offload computationally intensive tasks to more powerful machines:
1. **Server Discovery**: Automatically discover CUDA MVS servers on your network
2. **Image Upload**: Upload approved multi-view images to the remote server
3. **Job Processing**: Process the images on the remote server using CUDA MVS
4. **Status Tracking**: Monitor the job status and progress
5. **Result Download**: Download the completed 3D model when processing is finished
## Supported Export Formats
The server supports exporting models in various formats:
- **OBJ**: Wavefront OBJ format (standard 3D model format)
- **STL**: Standard Triangle Language (for 3D printing)
- **PLY**: Polygon File Format (for point clouds and meshes)
- **SCAD**: OpenSCAD source code (for parametric models)
- **CSG**: OpenSCAD CSG format (preserves all parametric properties)
- **AMF**: Additive Manufacturing File Format (preserves some metadata)
- **3MF**: 3D Manufacturing Format (modern replacement for STL with metadata)
## Web Interface
The server provides a web interface for:
- Generating and approving multi-view images
- Previewing 3D models from different angles
- Downloading models in various formats
Access the interface at http://localhost:8000/ui/
## License
MIT
## Contributing
Contributions are welcome! Please feel free to submit a Pull Request.