# Implementation Plan: OpenSCAD-MCP-Server with AI-Driven 3D Modeling
## 1. Project Structure Updates
### 1.1 New Modules
```
src/
├── ai/
│ ├── venice_api.py # Venice.ai API client
│ └── sam_segmentation.py # SAM2 integration
├── models/
│ └── threestudio_generator.py # threestudio integration
└── workflow/
└── image_to_model_pipeline.py # Workflow orchestration
```
### 1.2 Dependencies
Add to requirements.txt:
```
# Image Generation - Venice.ai API
# (using existing requests and python-dotenv)
# Object Segmentation - SAM2
torch>=2.0.0
torchvision>=0.15.0
opencv-python>=4.7.0
segment-anything>=1.0
# 3D Model Creation - threestudio
ninja>=1.11.0
pytorch3d>=0.7.4
trimesh>=3.21.0
```
## 2. Component Implementation
### 2.1 Venice.ai API Integration
- Create `VeniceImageGenerator` class in `venice_api.py`
- Implement authentication with API key
- Add image generation with Flux model
- Support image downloading and storage
### 2.2 SAM2 Integration
- Create `SAMSegmenter` class in `sam_segmentation.py`
- Implement model loading with PyTorch
- Add object segmentation from images
- Support mask generation and visualization
### 2.3 threestudio Integration
- Create `ThreeStudioGenerator` class in `threestudio_generator.py`
- Implement 3D model generation from masked images
- Support model export in formats compatible with OpenSCAD
- Add preview image generation
### 2.4 OpenSCAD Integration
- Extend `OpenSCADWrapper` with methods to:
- Import 3D models from threestudio
- Generate parametric modifications
- Create multi-angle previews
- Export in various formats
### 2.5 Workflow Orchestration
- Create `ImageToModelPipeline` class to coordinate the workflow:
1. Generate image with Venice.ai API
2. Segment object with SAM2
3. Create 3D model with threestudio
4. Import into OpenSCAD for parametric editing
## 3. MCP Tool Integration
Add new MCP tools to main.py:
- `generate_image_from_text`: Generate images using Venice.ai
- `segment_object_from_image`: Segment objects using SAM2
- `generate_3d_model_from_image`: Create 3D models using threestudio
- `generate_model_from_text`: End-to-end pipeline from text to 3D model
## 4. Hardware Requirements
- SAM2: NVIDIA GPU with 6GB+ VRAM
- threestudio: NVIDIA GPU with 6GB+ VRAM
- Consider implementing fallback options for environments with limited GPU resources
## 5. Implementation Phases
### Phase 1: Basic Integration
- Implement Venice.ai API client
- Set up SAM2 with basic segmentation
- Create threestudio wrapper with minimal functionality
- Extend OpenSCAD wrapper for model import
### Phase 2: Workflow Orchestration
- Implement the full pipeline
- Add MCP tools for each component
- Create end-to-end workflow tool
### Phase 3: Optimization and Refinement
- Optimize for performance
- Add error handling and recovery
- Implement corrective cycle for mesh modification
- Add user interface improvements
MCP directory API
We provide all the information about MCP servers via our MCP API.
curl -X GET 'https://glama.ai/api/mcp/v1/servers/jhacksman/OpenSCAD-MCP-Server'
If you have feedback or need assistance with the MCP directory API, please join our Discord server