Skip to main content
Glama

OpenSCAD MCP Server

by jhacksman
test_model_selection.py1.79 kB
import os import logging from src.ai.venice_api import VeniceImageGenerator # Configure logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) # Venice.ai API key (replace with your own or use environment variable) VENICE_API_KEY = os.getenv("VENICE_API_KEY", "B9Y68yQgatQw8wmpmnIMYcGip1phCt-43CS0OktZU6") OUTPUT_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "output", "images") # Test natural language model selection def test_model_selection(): """Test the natural language model selection functionality.""" # Initialize the Venice API client venice_generator = VeniceImageGenerator(VENICE_API_KEY, OUTPUT_DIR) # Test cases - natural language preferences to expected model mappings test_cases = [ ("default", "fluently-xl"), ("fastest model please", "fluently-xl"), ("I need a high quality image", "flux-dev"), ("create an uncensored image", "flux-dev-uncensored"), ("make it realistic", "pony-realism"), ("I want something artistic", "lustify-sdxl"), ("use stable diffusion", "stable-diffusion-3.5"), ("invalid model name", "fluently-xl"), # Should default to fluently-xl ] # Run tests for preference, expected_model in test_cases: mapped_model = venice_generator.map_model_preference(preference) logger.info(f"Preference: '{preference}' -> Model: '{mapped_model}'") assert mapped_model == expected_model, f"Expected {expected_model}, got {mapped_model}" logger.info("All model preference mappings tests passed!") if __name__ == "__main__": logger.info("Starting Venice.ai model selection mapping tests") test_model_selection()

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/jhacksman/OpenSCAD-MCP-Server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server