Skip to main content
Glama

ChurnFlow MCP Server

by jgsteeler
MCP-SETUP.md5.08 kB
# ChurnFlow MCP Server Setup (v0.4.2) This guide shows how to configure ChurnFlow as an MCP (Model Context Protocol) server for use with GitHub Copilot and other AI assistants. ## Quick Start 1. **Build the project**: ```bash npm run build ``` 2. **Start the MCP server**: ```bash npm run mcp ``` 3. **Or run directly with tsx**: ```bash tsx src/index.ts ``` ## Available Tools (v0.4.2) The ChurnFlow MCP server provides three tools for AI assistants: ### 1. `capture` Capture and route text using ChurnFlow's ADHD-friendly AI system. **Parameters**: - `text` (required): Text to capture and route (can contain multiple items) - `priority` (optional): Priority level (`high`, `medium`, `low`) - `context` (optional): Context hint for routing (`business`, `personal`, `project`, `system`) **Example**: ```json { "text": "Schedule client meeting about the proposal and update project documentation", "priority": "high", "context": "business" } ``` ### 2. `status` Get ChurnFlow system status and tracker information. **Parameters**: None **Returns**: System initialization status, tracker counts, AI provider info, confidence threshold, collections path. ### 3. `list_trackers` ### 4. `search_captures` (NEW in v0.4.2) Search database for captures using full-text search. **Parameters**: - `query` (required): Search string - `context` (optional): Context filter **Returns**: List of matching captures with metadata. ### 5. `get_analytics` (NEW in v0.4.2) Get real-time statistics and analytics from the database. **Parameters**: None **Returns**: Dashboard statistics, counts, and trends. List available trackers with their context types and status. **Parameters**: - `context` (optional): Filter by context type (`business`, `personal`, `project`, `system`) **Returns**: List of available trackers with their metadata. ## GitHub Copilot Configuration To use ChurnFlow with GitHub Copilot, you'll need to configure it as an MCP server in your settings. ### For VS Code 1. Create or update your MCP configuration file (typically `~/.config/mcp/servers.json`): ```json { "churnflow": { "command": "node", "args": ["/path/to/churn-mcp/dist/index.js"], "env": { "NODE_ENV": "production" } } } ``` 2. Or for development with tsx: ```json { "churnflow": { "command": "tsx", "args": ["/path/to/churn-mcp/src/index.ts"], "cwd": "/path/to/churn-mcp" } } ``` ### Configuration Requirements Make sure ChurnFlow is properly configured: 1. **Config file**: `churn.config.json` should exist in your system 2. **Collections path**: Should point to your Churn collections directory 3. **Crossref**: `crossref.json` should exist with tracker definitions 4. **OpenAI API**: API key should be configured for AI inference ## Testing the MCP Server ### Manual Testing You can test the MCP server manually using the standard input/output protocol: ```bash npm run mcp ``` Then send JSON-RPC messages like: ```json {"jsonrpc": "2.0", "id": 1, "method": "tools/list", "params": {}} {"jsonrpc": "2.0", "id": 2, "method": "tools/call", "params": {"name": "status", "arguments": {}}} {"jsonrpc": "2.0", "id": 3, "method": "tools/call", "params": {"name": "capture", "arguments": {"text": "Test MCP capture functionality"}}} ``` ### Integration Testing with AI Assistants Once configured with GitHub Copilot: 1. Open a conversation with Copilot 2. Ask it to capture something: *"Use ChurnFlow to capture 'Review quarterly financials and prepare board presentation'"* 3. Ask for status: *"What's the status of my ChurnFlow system?"* 4. List trackers: *"Show me my available ChurnFlow trackers"* ## Features - **Multi-item Processing**: Single input can generate multiple routed items - **ADHD-Friendly**: Designed for brain dump style capture - **Smart Routing**: AI determines appropriate trackers automatically - **Consistent Formatting**: Uses FormattingUtils v0.2.2 for perfect formatting - **Error Handling**: Graceful fallbacks ensure no thoughts are lost - **Production Ready**: 122 comprehensive tests, proper error handling ## Troubleshooting ### Common Issues 1. **Server won't start**: Check that all dependencies are installed (`npm install`) 2. **Configuration errors**: Verify `churn.config.json` exists and is valid 3. **No trackers found**: Check `crossref.json` and tracker file paths 4. **OpenAI errors**: Verify API key is configured and valid ### Debug Mode For debugging, you can add logging: ```bash DEBUG=* npm run mcp ``` ### Log Files Server logs go to stderr, so you can capture them: ```bash npm run mcp 2> mcp-server.log ``` ## Architecture The MCP server: - Uses `@modelcontextprotocol/sdk` for MCP protocol handling - Integrates with existing `CaptureEngine` for processing - Leverages `FormattingUtils` for consistent output - Maintains all v0.2.2 formatting and routing capabilities - Provides the same multi-item capture as the CLI This allows AI assistants to use ChurnFlow's ADHD-friendly productivity capture system directly!

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/jgsteeler/churnflow-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server