Skip to main content
Glama
tech-stack.mdβ€’14 kB
# πŸ› οΈ MCP Agentic AI Server - Technology Stack This document provides a comprehensive overview of all technologies, frameworks, libraries, and tools used in the MCP Agentic AI Server project. ## πŸ“‹ Table of Contents 1. [Core Technologies](#core-technologies) 2. [Backend Technologies](#backend-technologies) 3. [Frontend Technologies](#frontend-technologies) 4. [AI/ML Technologies](#aiml-technologies) 5. [Development Tools](#development-tools) 6. [Deployment & DevOps](#deployment--devops) 7. [Monitoring & Logging](#monitoring--logging) 8. [Security Technologies](#security-technologies) 9. [Database & Storage](#database--storage) 10. [Version Requirements](#version-requirements) --- ## 🐍 Core Technologies ### **Python 3.12** - **Purpose**: Primary programming language for the entire application - **Why Chosen**: - Excellent AI/ML ecosystem support - Rich web framework options (Flask) - Strong community and library support - Easy integration with Google AI services - **Usage**: Backend servers, AI integration, data processing, web APIs - **Key Features Used**: - Type hints for better code quality - Async/await for concurrent operations - Context managers for resource handling - Decorators for clean API design ### **Flask 2.0+** - **Purpose**: Web framework for REST API development - **Why Chosen**: - Lightweight and flexible - Easy to understand and implement - Excellent for microservices architecture - Great ecosystem of extensions - **Usage**: Custom MCP Server, Public MCP Server - **Key Features Used**: - Route decorators for endpoint definition - Request/Response handling - JSON serialization/deserialization - Error handling and logging integration --- ## πŸ”§ Backend Technologies ### **Threading & Concurrency** ```python import threading import time from concurrent.futures import ThreadPoolExecutor ``` - **Purpose**: Thread-safe operations and concurrent request handling - **Implementation**: Statistics tracking, concurrent API calls - **Key Components**: - `threading.Lock()` for thread-safe data access - Thread-safe counters for statistics - Concurrent task processing ### **UUID Generation** ```python import uuid ``` - **Purpose**: Unique task ID generation - **Why Used**: Ensures no task ID collisions in distributed systems - **Implementation**: `str(uuid.uuid4())` for task identification ### **Environment Management** ```python from dotenv import load_dotenv import os ``` - **Purpose**: Secure configuration and API key management - **Files**: `.env` for sensitive data, `.env.example` for templates - **Security**: Keeps API keys out of source code ### **YAML Configuration** ```python import yaml ``` - **Purpose**: Structured configuration files - **Usage**: AI model configuration, application settings - **Benefits**: Human-readable, hierarchical configuration ### **Logging System** ```python import logging ``` - **Purpose**: Comprehensive application logging - **Configuration**: Structured logging with timestamps and levels - **Usage**: Debugging, monitoring, audit trails --- ## 🎨 Frontend Technologies ### **Streamlit 1.24.0+** - **Purpose**: Interactive web dashboard creation - **Why Chosen**: - Rapid prototyping and development - Built-in widgets and components - Real-time data updates - Python-native (no separate frontend framework needed) - **Key Features Used**: - `st.set_page_config()` for page setup - `st.radio()` for server selection - `st.text_input()` for user input - `st.button()` for form submission - `st.json()` for response display ### **Modern CSS3** - **Purpose**: Advanced styling and user experience - **Techniques Used**: - **Glassmorphism Effects**: `backdrop-filter: blur()` - **CSS Grid**: Responsive layout system - **CSS Animations**: Smooth transitions and effects - **Custom Properties**: CSS variables for theming - **Media Queries**: Mobile-responsive design ### **CSS Features Implemented** ```css /* Glassmorphism */ background: rgba(255, 255, 255, 0.1); backdrop-filter: blur(20px); border: 1px solid rgba(255, 255, 255, 0.18); /* Animations */ @keyframes slideUp { from { opacity: 0; transform: translateY(30px); } to { opacity: 1; transform: translateY(0); } } /* Responsive Grid */ .main-grid { display: grid; grid-template-columns: 1fr 2fr 1fr; gap: 1rem; } ``` ### **Google Fonts Integration** - **Font Family**: Inter (300, 400, 500, 600, 700 weights) - **Purpose**: Modern, professional typography - **Implementation**: CSS `@import` for web font loading --- ## πŸ€– AI/ML Technologies ### **Google Gemini API** - **Purpose**: Advanced AI language model integration - **Model Used**: `gemini-2.5-flash` - **Why Chosen**: - State-of-the-art language understanding - Fast response times - Reliable API with good documentation - Cost-effective for development and testing ### **Google GenAI Python Client** ```python from google import genai ``` - **Purpose**: Official Python client for Gemini API - **Features Used**: - Content generation - Model configuration - Error handling - Response processing ### **Prompt Engineering** - **Techniques**: Structured prompts with clear instructions - **Implementation**: Dynamic prompt construction with tool outputs - **Best Practices**: Context preservation, consistent formatting --- ## πŸ› οΈ Development Tools ### **Code Editor: Visual Studio Code** - **Extensions Used**: - Python extension for syntax highlighting - Flask snippets for rapid development - GitLens for version control - Prettier for code formatting ### **Version Control: Git** - **Platform**: GitHub for repository hosting - **Branching Strategy**: Feature branches with main branch protection - **Commit Convention**: Conventional commits for clear history ### **Package Management** ```bash pip install -r requirements.txt ``` - **Tool**: pip with requirements.txt - **Virtual Environment**: Conda for isolated development - **Dependency Tracking**: Exact version pinning for reproducibility ### **API Testing Tools** - **cURL**: Command-line HTTP client for API testing - **Postman**: GUI-based API testing and documentation - **Browser DevTools**: Network inspection and debugging --- ## πŸš€ Deployment & DevOps ### **Containerization (Future Enhancement)** ```dockerfile FROM python:3.12-slim WORKDIR /app COPY requirements.txt . RUN pip install -r requirements.txt COPY . . EXPOSE 8000 8001 8501 ``` - **Technology**: Docker for containerization - **Benefits**: Consistent deployment across environments - **Orchestration**: Kubernetes for production scaling ### **Process Management** - **Development**: Multiple terminal sessions - **Production**: Process managers like Supervisor or systemd - **Monitoring**: Health checks and automatic restarts ### **Environment Configuration** ```bash # Development export FLASK_ENV=development export GEMINI_API_KEY=your_api_key # Production export FLASK_ENV=production export GEMINI_API_KEY=production_api_key ``` --- ## πŸ“Š Monitoring & Logging ### **Application Monitoring** - **Built-in Statistics**: Real-time performance metrics - **Metrics Tracked**: - Response times - Success/failure rates - Query counts - Uptime statistics ### **Logging Framework** ```python logging.basicConfig( level=logging.INFO, format="%(asctime)s [%(levelname)s] %(message)s" ) ``` - **Levels**: INFO, WARNING, ERROR, DEBUG - **Output**: Console and file logging - **Structured**: Timestamp, level, and message format ### **Future Monitoring Stack** - **Prometheus**: Metrics collection and storage - **Grafana**: Visualization and dashboards - **ELK Stack**: Log aggregation and analysis - **Alerting**: Email and Slack notifications --- ## πŸ” Security Technologies ### **API Security** - **HTTPS**: TLS encryption for data in transit - **API Key Management**: Environment variable storage - **Input Validation**: Request data sanitization - **Error Handling**: Secure error messages without sensitive data ### **Environment Security** ```python # Secure API key loading api_key = os.getenv("GEMINI_API_KEY") if not api_key: raise RuntimeError("Missing GEMINI_API_KEY") ``` ### **Future Security Enhancements** - **JWT Tokens**: Stateless authentication - **Rate Limiting**: Request throttling - **CORS**: Cross-origin request security - **Input Sanitization**: XSS and injection prevention --- ## πŸ’Ύ Database & Storage ### **Current Storage Solutions** #### **In-Memory Storage** ```python # Task storage self.tasks = {} # Dictionary for active tasks # Statistics storage stats_data = { "queries_processed": 0, "total_response_time": 0.0, "success_count": 0, "failure_count": 0 } ``` - **Purpose**: Fast access for active data - **Limitations**: Data lost on restart - **Use Cases**: Task management, real-time statistics #### **File-Based Storage** - **Configuration**: YAML files for settings - **Logs**: Text files for application logs - **Environment**: .env files for configuration ### **Future Database Integration** - **Redis**: Caching and session storage - **PostgreSQL**: Persistent data storage - **MongoDB**: Document storage for flexible schemas - **InfluxDB**: Time-series data for metrics --- ## πŸ“¦ Version Requirements ### **Core Dependencies** ```txt Flask>=2.0 streamlit>=1.24.0 python-dotenv>=0.19.0 PyYAML>=6.0 requests>=2.28.0 google-generativeai>=0.3.0 ``` ### **Development Dependencies** ```txt pytest>=7.0.0 black>=22.0.0 flake8>=4.0.0 mypy>=0.950 ``` ### **System Requirements** - **Python**: 3.12 or higher - **Memory**: Minimum 4GB RAM (8GB recommended) - **Storage**: 1GB free space - **Network**: Internet connection for AI API calls - **OS**: Windows 10/11, macOS 10.15+, Linux Ubuntu 18.04+ --- ## πŸ”„ Technology Integration Flow ```mermaid graph TB subgraph "🎨 Frontend Stack" A[Streamlit + CSS3] B[Google Fonts] C[Responsive Design] end subgraph "πŸ”§ Backend Stack" D[Flask + Python 3.12] E[Threading + UUID] F[Logging + YAML] end subgraph "πŸ€– AI Stack" G[Google Gemini API] H[GenAI Python Client] I[Prompt Engineering] end subgraph "πŸ› οΈ Development Stack" J[VS Code + Git] K[pip + Conda] L[cURL + Postman] end A --> D D --> G G --> H H --> I J --> K K --> L style A fill:#e1f5fe style D fill:#e8f5e8 style G fill:#ffebee style J fill:#fff3e0 ``` --- ## πŸš€ Technology Roadmap ### **Phase 1: Current Implementation** - βœ… Python 3.12 + Flask backend - βœ… Streamlit dashboard - βœ… Google Gemini integration - βœ… Basic monitoring and logging ### **Phase 2: Enhanced Features** - πŸ”„ Redis caching integration - πŸ”„ PostgreSQL database - πŸ”„ Advanced error handling - πŸ”„ API documentation with Swagger ### **Phase 3: Production Ready** - πŸ“‹ Docker containerization - πŸ“‹ Kubernetes orchestration - πŸ“‹ CI/CD pipeline - πŸ“‹ Comprehensive monitoring ### **Phase 4: Advanced Features** - πŸ“‹ Machine learning model training - πŸ“‹ Advanced analytics - πŸ“‹ Multi-tenant architecture - πŸ“‹ Real-time collaboration --- ## 🎯 Technology Decision Rationale ### **Why Python?** - **AI/ML Ecosystem**: Best-in-class libraries and frameworks - **Rapid Development**: Quick prototyping and iteration - **Community Support**: Large, active community - **Integration**: Easy integration with cloud services ### **Why Flask over Django?** - **Simplicity**: Minimal boilerplate for API development - **Flexibility**: Easy to customize and extend - **Microservices**: Perfect for small, focused services - **Learning Curve**: Easier for beginners to understand ### **Why Streamlit over React/Vue?** - **Python Native**: No context switching between languages - **Rapid Prototyping**: Quick dashboard development - **Built-in Components**: Rich set of UI components - **Data Science Focus**: Perfect for AI/ML applications ### **Why Google Gemini?** - **Performance**: Fast response times - **Quality**: High-quality text generation - **Cost**: Competitive pricing - **Reliability**: Stable API with good uptime --- ## πŸ“š Learning Resources ### **Python & Flask** - [Flask Official Documentation](https://flask.palletsprojects.com/) - [Real Python Flask Tutorials](https://realpython.com/tutorials/flask/) - [Python 3.12 Documentation](https://docs.python.org/3.12/) ### **Streamlit** - [Streamlit Documentation](https://docs.streamlit.io/) - [Streamlit Gallery](https://streamlit.io/gallery) - [Streamlit Community](https://discuss.streamlit.io/) ### **Google Gemini** - [Gemini API Documentation](https://ai.google.dev/docs) - [Google AI Python Client](https://github.com/google/generative-ai-python) - [Prompt Engineering Guide](https://ai.google.dev/docs/prompt_intro) ### **Modern CSS** - [CSS Grid Guide](https://css-tricks.com/snippets/css/complete-guide-grid/) - [Glassmorphism Tutorial](https://css.glass/) - [CSS Animations](https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Animations) --- ## πŸŽ‰ Conclusion The MCP Agentic AI Server project leverages a carefully selected technology stack that balances: - **πŸš€ Performance**: Fast response times and efficient processing - **πŸ”§ Maintainability**: Clean, well-structured code - **πŸ“ˆ Scalability**: Architecture that can grow with demand - **🎨 User Experience**: Modern, intuitive interface design - **πŸ” Security**: Robust security practices and patterns - **πŸ“š Learning**: Technologies that enhance developer skills This technology stack provides a solid foundation for building production-ready AI applications while maintaining simplicity and ease of understanding for learning purposes. --- _This technology stack documentation is part of the MCP Agentic AI Server Project - designed to provide comprehensive understanding of all technical components and their integration._

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/itsDurvank/Mcp_server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server