Skip to main content
Glama
designs.mdβ€’19.2 kB
# πŸ—οΈ MCP Agentic AI Server - Architecture Designs This document contains comprehensive Mermaid diagrams illustrating the system architecture, component designs, and technical infrastructure of the MCP Agentic AI Server project. ## πŸ“‹ Table of Contents 1. [High-Level System Architecture](#high-level-system-architecture) 2. [Component Architecture](#component-architecture) 3. [Data Architecture](#data-architecture) 4. [Network Architecture](#network-architecture) 5. [Security Architecture](#security-architecture) 6. [Deployment Architecture](#deployment-architecture) 7. [Microservices Architecture](#microservices-architecture) 8. [Database Design](#database-design) 9. [API Architecture](#api-architecture) 10. [Monitoring Architecture](#monitoring-architecture) --- ## 🌐 High-Level System Architecture ```mermaid C4Context title System Context Diagram - MCP Agentic AI Server Person(user, "End User", "Interacts with AI agents through web interface") System_Boundary(mcp_system, "MCP Agentic AI System") { System(dashboard, "Streamlit Dashboard", "Interactive web interface for AI interactions") System(custom_mcp, "Custom MCP Server", "Task-based AI processing with tool integration") System(public_mcp, "Public MCP Server", "Direct AI query processing") } System_Ext(gemini, "Google Gemini API", "AI language model service") System_Ext(browser, "Web Browser", "User interface client") Rel(user, browser, "Uses") Rel(browser, dashboard, "HTTP/WebSocket") Rel(dashboard, custom_mcp, "REST API") Rel(dashboard, public_mcp, "REST API") Rel(custom_mcp, gemini, "HTTPS API") Rel(public_mcp, gemini, "HTTPS API") ``` --- ## πŸ”§ Component Architecture ```mermaid graph TB subgraph "🎨 Presentation Layer" A[Streamlit Dashboard] A1[Real-time Stats Display] A2[Interactive Forms] A3[Response Visualization] A --> A1 A --> A2 A --> A3 end subgraph "πŸ”„ Application Layer" B[Custom MCP Server] C[Public MCP Server] subgraph "πŸ”§ Custom MCP Components" B1[Flask Web Server] B2[MCP Controller] B3[Task Manager] B4[Tool Framework] B --> B1 B --> B2 B --> B3 B --> B4 end subgraph "🌐 Public MCP Components" C1[Flask Web Server] C2[Direct AI Handler] C3[Statistics Tracker] C --> C1 C --> C2 C --> C3 end end subgraph "πŸ› οΈ Service Layer" D[Gemini AI Client] E[Configuration Manager] F[Logging Service] G[Statistics Engine] end subgraph "πŸ’Ύ Data Layer" H[In-Memory Task Store] I[Statistics Cache] J[Configuration Files] K[Log Files] end A1 --> G A2 --> B1 A2 --> C1 B2 --> D B3 --> H B4 --> D C2 --> D C3 --> I B2 --> G C2 --> G D --> E G --> F F --> K E --> J style A fill:#e1f5fe style B fill:#e8f5e8 style C fill:#fff3e0 style D fill:#ffebee ``` --- ## πŸ“Š Data Architecture ```mermaid erDiagram TASK { string task_id PK string input array tools timestamp created_at string status } STATISTICS { int queries_processed float total_response_time int successful_queries int failed_queries timestamp session_start_time int active_sessions } TOOL_EXECUTION { string execution_id PK string task_id FK string tool_name string input_data string output_data float execution_time string status } AI_RESPONSE { string response_id PK string task_id FK string prompt string response float response_time string model_used timestamp created_at } USER_SESSION { string session_id PK timestamp start_time timestamp last_activity int query_count string user_agent } TASK ||--o{ TOOL_EXECUTION : "has" TASK ||--|| AI_RESPONSE : "generates" USER_SESSION ||--o{ TASK : "creates" STATISTICS ||--o{ TASK : "tracks" ``` --- ## 🌐 Network Architecture ```mermaid graph TB subgraph "🌍 Internet" U[πŸ‘€ Users] end subgraph "πŸ”’ DMZ Zone" LB[βš–οΈ Load Balancer<br/>nginx/HAProxy] FW[πŸ›‘οΈ Firewall<br/>iptables/UFW] end subgraph "🏒 Application Zone" subgraph "🎨 Frontend Tier" ST[🎨 Streamlit<br/>Port 8501] end subgraph "βš™οΈ Backend Tier" CM[πŸ”§ Custom MCP<br/>Port 8000] PM[🌐 Public MCP<br/>Port 8001] end subgraph "πŸ“Š Monitoring Tier" MON[πŸ“Š Monitoring<br/>Prometheus/Grafana] LOG[πŸ“ Logging<br/>ELK Stack] end end subgraph "🌐 External Services" GM[🧠 Google Gemini API<br/>HTTPS/443] end U --> FW FW --> LB LB --> ST ST --> CM ST --> PM CM --> GM PM --> GM CM --> MON PM --> MON ST --> MON CM --> LOG PM --> LOG ST --> LOG style U fill:#e1f5fe style LB fill:#fff3e0 style FW fill:#ffebee style GM fill:#f3e5f5 ``` --- ## πŸ” Security Architecture ```mermaid graph TB subgraph "πŸ›‘οΈ Security Layers" subgraph "🌐 Network Security" A[πŸ”₯ Firewall Rules] B[πŸ”’ HTTPS/TLS] C[🚫 Rate Limiting] end subgraph "πŸ”‘ Authentication & Authorization" D[πŸ” API Key Management] E[🎫 Session Management] F[πŸ‘€ User Validation] end subgraph "πŸ“Š Data Security" G[πŸ”’ Input Sanitization] H[πŸ›‘οΈ Output Filtering] I[πŸ“ Audit Logging] end subgraph "πŸ—οΈ Application Security" J[⚠️ Error Handling] K[πŸ” Input Validation] L[🚨 Security Headers] end end subgraph "🎯 Attack Vectors & Mitigations" M[🚫 SQL Injection β†’ Input Validation] N[🚫 XSS β†’ Output Encoding] O[🚫 CSRF β†’ Token Validation] P[🚫 DDoS β†’ Rate Limiting] Q[🚫 Data Breach β†’ Encryption] end A --> D B --> E C --> F D --> G E --> H F --> I G --> J H --> K I --> L style A fill:#ffebee style D fill:#fff3e0 style G fill:#e8f5e8 style J fill:#e1f5fe ``` --- ## πŸš€ Deployment Architecture ```mermaid graph TB subgraph "☁️ Cloud Infrastructure" subgraph "🌐 Production Environment" subgraph "πŸ”„ Load Balancer Tier" LB1[βš–οΈ Primary LB] LB2[βš–οΈ Secondary LB] end subgraph "🎨 Frontend Tier" ST1[🎨 Streamlit Instance 1] ST2[🎨 Streamlit Instance 2] ST3[🎨 Streamlit Instance 3] end subgraph "βš™οΈ Backend Tier" CM1[πŸ”§ Custom MCP 1] CM2[πŸ”§ Custom MCP 2] PM1[🌐 Public MCP 1] PM2[🌐 Public MCP 2] end subgraph "πŸ’Ύ Data Tier" RD[πŸ“Š Redis Cache] DB[πŸ—„οΈ PostgreSQL] FS[πŸ“ File Storage] end end subgraph "πŸ§ͺ Staging Environment" ST_STG[🎨 Streamlit Staging] CM_STG[πŸ”§ Custom MCP Staging] PM_STG[🌐 Public MCP Staging] end subgraph "πŸ”§ Development Environment" ST_DEV[🎨 Streamlit Dev] CM_DEV[πŸ”§ Custom MCP Dev] PM_DEV[🌐 Public MCP Dev] end end subgraph "πŸ”„ CI/CD Pipeline" GIT[πŸ“š Git Repository] BUILD[πŸ”¨ Build Process] TEST[πŸ§ͺ Automated Tests] DEPLOY[πŸš€ Deployment] end LB1 --> ST1 LB1 --> ST2 LB2 --> ST3 ST1 --> CM1 ST2 --> CM2 ST3 --> PM1 ST1 --> PM2 CM1 --> RD CM2 --> RD PM1 --> DB PM2 --> DB GIT --> BUILD BUILD --> TEST TEST --> DEPLOY DEPLOY --> ST_STG DEPLOY --> CM_STG DEPLOY --> PM_STG style LB1 fill:#fff3e0 style ST1 fill:#e1f5fe style CM1 fill:#e8f5e8 style RD fill:#f3e5f5 ``` --- ## πŸ”„ Microservices Architecture ```mermaid graph TB subgraph "🎯 API Gateway" GW[πŸšͺ API Gateway<br/>Kong/Zuul] end subgraph "πŸ”§ Core Services" subgraph "🎨 UI Service" UI[🎨 Streamlit Service<br/>Port 8501] end subgraph "πŸ€– AI Services" CM[πŸ”§ Custom MCP Service<br/>Port 8000] PM[🌐 Public MCP Service<br/>Port 8001] end subgraph "πŸ› οΈ Support Services" TS[πŸ“‹ Task Service] SS[πŸ“Š Statistics Service] LS[πŸ“ Logging Service] CS[βš™οΈ Config Service] end end subgraph "πŸ’Ύ Data Services" CACHE[πŸ“Š Redis Cache] DB[πŸ—„οΈ Database] QUEUE[πŸ“¬ Message Queue] end subgraph "🌐 External Services" GEMINI[🧠 Gemini API] MONITOR[πŸ“Š Monitoring] end GW --> UI GW --> CM GW --> PM UI --> CM UI --> PM UI --> SS CM --> TS CM --> SS CM --> GEMINI PM --> SS PM --> GEMINI TS --> CACHE SS --> CACHE LS --> DB CS --> DB CM --> QUEUE PM --> QUEUE SS --> MONITOR LS --> MONITOR style GW fill:#fff3e0 style UI fill:#e1f5fe style CM fill:#e8f5e8 style GEMINI fill:#ffebee ``` --- ## πŸ—„οΈ Database Design ```mermaid graph TB subgraph "πŸ’Ύ Data Storage Architecture" subgraph "πŸ”„ Operational Data" CACHE[πŸ“Š Redis Cache<br/>β€’ Session Data<br/>β€’ Statistics<br/>β€’ Temporary Results] MEMORY[πŸ’­ In-Memory Store<br/>β€’ Active Tasks<br/>β€’ Real-time Metrics<br/>β€’ User Sessions] end subgraph "πŸ“š Persistent Data" LOGS[πŸ“ Log Files<br/>β€’ Application Logs<br/>β€’ Error Logs<br/>β€’ Access Logs] CONFIG[βš™οΈ Configuration<br/>β€’ YAML Files<br/>β€’ Environment Variables<br/>β€’ API Keys] end subgraph "πŸ“Š Analytics Data" METRICS[πŸ“ˆ Time Series DB<br/>β€’ Performance Metrics<br/>β€’ Usage Statistics<br/>β€’ Historical Data] AUDIT[πŸ” Audit Trail<br/>β€’ User Actions<br/>β€’ System Events<br/>β€’ Security Logs] end end subgraph "πŸ”„ Data Flow" APP[🎯 Application Layer] APP --> CACHE APP --> MEMORY APP --> LOGS APP --> CONFIG CACHE --> METRICS MEMORY --> METRICS LOGS --> AUDIT end style CACHE fill:#e1f5fe style MEMORY fill:#fff3e0 style LOGS fill:#e8f5e8 style METRICS fill:#f3e5f5 ``` --- ## πŸ”Œ API Architecture ```mermaid graph TB subgraph "🌐 API Layer Architecture" subgraph "πŸšͺ API Gateway" GW[πŸšͺ Gateway Router<br/>β€’ Authentication<br/>β€’ Rate Limiting<br/>β€’ Load Balancing] end subgraph "πŸ”§ Custom MCP API" CM_API[πŸ”§ Custom MCP Endpoints] CM_TASK[πŸ“‹ POST /task<br/>Create Task] CM_RUN[▢️ POST /task/{id}/run<br/>Execute Task] CM_STATS[πŸ“Š GET /stats<br/>Get Statistics] CM_API --> CM_TASK CM_API --> CM_RUN CM_API --> CM_STATS end subgraph "🌐 Public MCP API" PM_API[🌐 Public MCP Endpoints] PM_ASK[πŸ’¬ POST /ask<br/>Direct Query] PM_STATS[πŸ“Š GET /stats<br/>Get Statistics] PM_API --> PM_ASK PM_API --> PM_STATS end subgraph "🎨 Dashboard API" UI_API[🎨 Streamlit Interface] UI_FORM[πŸ“ Form Handlers] UI_DISPLAY[πŸ“Š Data Display] UI_API --> UI_FORM UI_API --> UI_DISPLAY end end subgraph "πŸ“Š API Documentation" SWAGGER[πŸ“š OpenAPI/Swagger<br/>β€’ Endpoint Documentation<br/>β€’ Request/Response Schemas<br/>β€’ Interactive Testing] end subgraph "πŸ” API Monitoring" MONITOR[πŸ“Š API Analytics<br/>β€’ Response Times<br/>β€’ Error Rates<br/>β€’ Usage Patterns] end GW --> CM_API GW --> PM_API GW --> UI_API CM_API --> SWAGGER PM_API --> SWAGGER CM_API --> MONITOR PM_API --> MONITOR UI_API --> MONITOR style GW fill:#fff3e0 style CM_API fill:#e8f5e8 style PM_API fill:#e1f5fe style SWAGGER fill:#f3e5f5 ``` --- ## πŸ“Š Monitoring Architecture ```mermaid graph TB subgraph "πŸ“Š Monitoring Stack" subgraph "πŸ“ˆ Metrics Collection" PROM[πŸ“Š Prometheus<br/>β€’ System Metrics<br/>β€’ Application Metrics<br/>β€’ Custom Metrics] NODE[πŸ–₯️ Node Exporter<br/>β€’ CPU, Memory<br/>β€’ Disk, Network<br/>β€’ System Health] APP_METRICS[πŸ“± Application Metrics<br/>β€’ Response Times<br/>β€’ Error Rates<br/>β€’ Business Metrics] end subgraph "πŸ“Š Visualization" GRAFANA[πŸ“Š Grafana<br/>β€’ Dashboards<br/>β€’ Alerts<br/>β€’ Reports] DASH[πŸ“ˆ Custom Dashboards<br/>β€’ Real-time Stats<br/>β€’ Performance Trends<br/>β€’ Usage Analytics] end subgraph "🚨 Alerting" ALERT[🚨 Alert Manager<br/>β€’ Threshold Alerts<br/>β€’ Escalation Rules<br/>β€’ Notification Routing] NOTIFY[πŸ“§ Notifications<br/>β€’ Email Alerts<br/>β€’ Slack Integration<br/>β€’ SMS Alerts] end subgraph "πŸ“ Logging" ELK[πŸ“ ELK Stack<br/>β€’ Elasticsearch<br/>β€’ Logstash<br/>β€’ Kibana] LOGS[πŸ“‹ Log Aggregation<br/>β€’ Application Logs<br/>β€’ Error Logs<br/>β€’ Access Logs] end end subgraph "🎯 Monitored Services" ST[🎨 Streamlit] CM[πŸ”§ Custom MCP] PM[🌐 Public MCP] SYS[πŸ–₯️ System Resources] end ST --> APP_METRICS CM --> APP_METRICS PM --> APP_METRICS SYS --> NODE APP_METRICS --> PROM NODE --> PROM PROM --> GRAFANA PROM --> ALERT GRAFANA --> DASH ALERT --> NOTIFY ST --> LOGS CM --> LOGS PM --> LOGS LOGS --> ELK style PROM fill:#e1f5fe style GRAFANA fill:#e8f5e8 style ALERT fill:#fff3e0 style ELK fill:#f3e5f5 ``` --- ## πŸ”„ Event-Driven Architecture ```mermaid graph TB subgraph "πŸ“¬ Event Bus" EB[πŸ“¬ Message Queue<br/>Redis Pub/Sub] end subgraph "πŸ“€ Event Publishers" CM_PUB[πŸ”§ Custom MCP<br/>β€’ Task Created<br/>β€’ Task Completed<br/>β€’ Tool Executed] PM_PUB[🌐 Public MCP<br/>β€’ Query Received<br/>β€’ Response Generated<br/>β€’ Error Occurred] UI_PUB[🎨 Dashboard<br/>β€’ User Action<br/>β€’ Page View<br/>β€’ Form Submit] end subgraph "πŸ“₯ Event Subscribers" STATS_SUB[πŸ“Š Statistics Service<br/>β€’ Update Metrics<br/>β€’ Calculate Rates<br/>β€’ Store History] LOG_SUB[πŸ“ Logging Service<br/>β€’ Write Logs<br/>β€’ Index Events<br/>β€’ Archive Data] MONITOR_SUB[πŸ“Š Monitoring Service<br/>β€’ Track Performance<br/>β€’ Generate Alerts<br/>β€’ Update Dashboards] NOTIFY_SUB[πŸ“§ Notification Service<br/>β€’ Send Alerts<br/>β€’ User Notifications<br/>β€’ System Messages] end CM_PUB --> EB PM_PUB --> EB UI_PUB --> EB EB --> STATS_SUB EB --> LOG_SUB EB --> MONITOR_SUB EB --> NOTIFY_SUB style EB fill:#fff3e0 style CM_PUB fill:#e8f5e8 style STATS_SUB fill:#e1f5fe ``` --- ## πŸ—οΈ Infrastructure as Code ```mermaid graph TB subgraph "πŸ”§ Infrastructure Management" subgraph "πŸ“‹ Configuration Management" TERRAFORM[πŸ—οΈ Terraform<br/>β€’ Infrastructure Provisioning<br/>β€’ Resource Management<br/>β€’ State Management] ANSIBLE[βš™οΈ Ansible<br/>β€’ Configuration Management<br/>β€’ Application Deployment<br/>β€’ Service Orchestration] end subgraph "🐳 Containerization" DOCKER[🐳 Docker<br/>β€’ Application Containers<br/>β€’ Multi-stage Builds<br/>β€’ Image Management] K8S[☸️ Kubernetes<br/>β€’ Container Orchestration<br/>β€’ Service Discovery<br/>β€’ Auto-scaling] end subgraph "πŸ”„ CI/CD Pipeline" GITHUB[πŸ“š GitHub Actions<br/>β€’ Source Control<br/>β€’ Automated Testing<br/>β€’ Deployment Pipeline] JENKINS[πŸ”„ Jenkins<br/>β€’ Build Automation<br/>β€’ Testing Pipeline<br/>β€’ Deployment Orchestration] end end subgraph "☁️ Cloud Providers" AWS[☁️ AWS<br/>β€’ EC2 Instances<br/>β€’ Load Balancers<br/>β€’ RDS Database] GCP[☁️ Google Cloud<br/>β€’ Compute Engine<br/>β€’ Cloud SQL<br/>β€’ Cloud Storage] AZURE[☁️ Azure<br/>β€’ Virtual Machines<br/>β€’ App Services<br/>β€’ Cosmos DB] end TERRAFORM --> AWS TERRAFORM --> GCP TERRAFORM --> AZURE ANSIBLE --> DOCKER DOCKER --> K8S GITHUB --> JENKINS JENKINS --> K8S style TERRAFORM fill:#e1f5fe style DOCKER fill:#e8f5e8 style K8S fill:#fff3e0 style AWS fill:#f3e5f5 ``` --- ## 🎯 Summary These architecture diagrams provide a comprehensive view of the MCP Agentic AI Server system design: ### πŸ—οΈ **Key Architectural Patterns** - **Microservices Architecture**: Loosely coupled, independently deployable services - **Event-Driven Design**: Asynchronous communication through message queues - **Layered Architecture**: Clear separation of concerns across presentation, application, and data layers - **API-First Design**: Well-defined interfaces for all service interactions ### πŸ”§ **Technology Stack** - **Frontend**: Streamlit with modern CSS and responsive design - **Backend**: Flask-based microservices with Python - **AI Integration**: Google Gemini API with robust error handling - **Data Storage**: Redis for caching, in-memory for real-time data - **Monitoring**: Prometheus, Grafana, and ELK stack - **Deployment**: Docker containers with Kubernetes orchestration ### πŸ“Š **Scalability Features** - **Horizontal Scaling**: Multiple instances of each service - **Load Balancing**: Traffic distribution across service instances - **Caching Strategy**: Redis for performance optimization - **Monitoring**: Comprehensive observability and alerting ### πŸ” **Security Considerations** - **API Security**: Authentication, authorization, and rate limiting - **Data Protection**: Input validation, output sanitization, and encryption - **Network Security**: Firewall rules, HTTPS/TLS, and secure communication - **Audit Trail**: Comprehensive logging and monitoring for security events These designs serve as blueprints for implementing, scaling, and maintaining the MCP Agentic AI Server system in production environments.

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/itsDurvank/Mcp_server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server