Skip to main content
Glama
IRIS_VECTOR_RAG_IMPROVEMENTS_VERIFIED.md•14.1 kB
# iris-vector-rag Improvements Verified **Date**: December 12, 2025 **Package Version**: iris-vector-rag 0.5.2 **Status**: āœ… Major Pain Points Addressed! ## Executive Summary After reviewing the reinstalled iris-vector-rag package, we're pleased to report that **MANY of our documented pain points have been addressed** in the current version! The iris-vector-rag team has implemented comprehensive configuration management that resolves our critical cloud deployment blockers. --- ## āœ… Pain Points NOW RESOLVED ### šŸŽ‰ #1: Environment Variable Support (RESOLVED) **Previous Issue**: Hardcoded connection settings blocked cloud deployments **Now Fixed**: Full environment variable support with `RAG_` prefix! ```python from iris_vector_rag.config.manager import ConfigurationManager # Supports environment variables with nested keys # RAG_DATABASE__IRIS__HOST -> config['database']['iris']['host'] # RAG_DATABASE__IRIS__PORT -> config['database']['iris']['port'] # RAG_DATABASE__IRIS__NAMESPACE -> config['database']['iris']['namespace'] config = ConfigurationManager() db_host = config.get("database:iris:host") # Reads from env or config file ``` **Environment Variables Supported**: ```bash export RAG_DATABASE__IRIS__HOST="3.84.250.46" export RAG_DATABASE__IRIS__PORT="1972" export RAG_DATABASE__IRIS__NAMESPACE="%SYS" export RAG_DATABASE__IRIS__USERNAME="_SYSTEM" export RAG_DATABASE__IRIS__PASSWORD="SYS" export RAG_STORAGE__IRIS__VECTOR_DIMENSION="1024" ``` **Impact**: āœ… **Cloud deployments no longer require code modification** **Priority**: CRITICAL - **NOW RESOLVED** šŸŽ‰ --- ### šŸŽ‰ #2: Configurable Vector Dimensions (RESOLVED) **Previous Issue**: Hardcoded 384-dimensional vectors blocked modern embeddings **Now Fixed**: Vector dimension is fully configurable! **From** `config/default_config.yaml`: ```yaml storage: iris: table_name: "RAG.SourceDocuments" vector_dimension: 384 # āœ… Now configurable! ``` **Usage**: ```bash # Via config file storage: iris: vector_dimension: 1024 # NVIDIA NIM # Via environment variable export RAG_STORAGE__IRIS__VECTOR_DIMENSION=1024 ``` **Supports**: - 384 (SentenceTransformers small) - 768 (BERT-based models) - 1024 (NVIDIA NIM: nv-embedqa-e5-v5) - 1536 (OpenAI ada-002) - 3072 (OpenAI text-embedding-3-large) - 4096+ (Custom models) **Impact**: āœ… **Can now use NVIDIA NIM, OpenAI, and any modern embedding model** **Priority**: CRITICAL - **NOW RESOLVED** šŸŽ‰ --- ### šŸŽ‰ #6: Configuration Manager (RESOLVED) **Previous Issue**: No centralized config management **Now Fixed**: Comprehensive `ConfigurationManager` with: - āœ… YAML config file loading - āœ… Environment variable overrides - āœ… Type casting (string → int/float/bool) - āœ… Nested key support with `__` delimiter - āœ… Configuration validation - āœ… Default config fallback **Features**: ```python from iris_vector_rag.config.manager import ConfigurationManager # Load from config file config = ConfigurationManager(config_path="config/aws_config.yaml") # Automatic environment variable override # Environment variables take precedence over config file # Access nested config with colon notation host = config.get("database:iris:host") # Supports nesting port = config.get("database:iris:port", default=1972) # With default # Type casting handled automatically port_int = config.get("database:iris:port") # Returns int, not string ``` **Impact**: āœ… **Production-ready configuration management** **Priority**: HIGH - **NOW RESOLVED** šŸŽ‰ --- ## āš ļø Pain Points PARTIALLY ADDRESSED ### 🟔 #3: Namespace Access Documentation (PARTIAL) **Status**: Configuration system supports it, documentation may need cloud-specific examples **What Works**: ```bash # Can now set namespace via environment variable export RAG_DATABASE__IRIS__NAMESPACE="%SYS" ``` **Still Needed**: - Cloud deployment guide with AWS/Azure examples - Namespace access troubleshooting section - Common gotchas documented **Recommendation**: Add to documentation: - Why `%SYS` is needed on AWS - How to diagnose "Access Denied" errors - SQLUser schema usage patterns **Priority**: MEDIUM - Configuration supports it, needs doc updates --- ### 🟔 #4: Table Name Flexibility (PARTIAL) **Status**: Configurable via config file, may need schema qualification support **What Works**: ```yaml storage: iris: table_name: "SQLUser.ClinicalNoteVectors" # Can specify schema ``` **Question**: Does iris-vector-rag handle fully qualified table names (Schema.Table)? - Need to test: `RAG.Entities` vs `SQLUser.Entities` - Check if SchemaManager respects schema prefixes **Recommendation**: Test with fully qualified names on AWS **Priority**: MEDIUM - Likely works, needs verification --- ## āŒ Pain Points STILL PENDING ### šŸ”“ #5: Data Migration Guide (NOT ADDRESSED) **Status**: No built-in data migration utilities found **Still Needed**: - Export FHIR resources from local IRIS - Import to cloud IRIS - Incremental sync strategies - Data validation after migration **Workaround**: Manual SQL export/import or IRIS replication **Priority**: MEDIUM - Not blocking, but would improve UX **Recommendation**: Community contribution opportunity --- ## šŸŽŠ NEW FEATURES DISCOVERED ### 1. IRIS EMBEDDING Support (Feature 051) **What**: Native IRIS auto-vectorization support - Automatic embedding generation within IRIS - Model caching and performance optimization - Multi-field vectorization - Entity extraction during vectorization **Configuration**: ```yaml iris_embedding: enabled: true default_config: model_name: "sentence-transformers/all-MiniLM-L6-v2" batch_size: 32 device_preference: "auto" # cuda, mps, cpu cache: enabled: true max_models: 5 eviction_policy: "lru" ``` **Impact**: Potential performance improvement over external embedding --- ### 2. Vector Index Configuration (HNSW) **What**: Configurable HNSW parameters for optimal performance **Configuration**: ```yaml vector_index: type: "HNSW" M: 16 # Links per node efConstruction: 200 # Build quality Distance: "COSINE" # Or EUCLIDEAN, DOT ``` **Impact**: Fine-tune search performance vs memory tradeoff --- ### 3. Schema Manager **What**: Automatic table creation and schema management - Creates tables with correct vector dimensions - Handles schema validation - Supports multiple table configurations **Impact**: Reduces manual DDL writing --- ### 4. Entity Extraction Pipeline **What**: Built-in medical entity extraction - Supports multiple entity types: DRUG, DISEASE, GENE, ANATOMY, etc. - LLM-based or pattern-based extraction - Configurable confidence thresholds **Configuration**: ```yaml entity_extraction: enabled: true method: "llm_basic" confidence_threshold: 0.7 entity_types: - "DRUG" - "DISEASE" - "SYMPTOM" ``` **Impact**: Could replace our custom medical entity extractor --- ## Updated Pain Point Status | Pain Point | Original Priority | Status | Notes | |-----------|------------------|--------|-------| | #1 Hardcoded Settings | šŸ”“ CRITICAL | āœ… **RESOLVED** | Env vars + config files | | #2 Vector Dimensions | šŸ”“ CRITICAL | āœ… **RESOLVED** | Fully configurable | | #3 Namespace Docs | 🟔 IMPORTANT | 🟔 **PARTIAL** | Config supports, needs docs | | #4 Table Names | 🟔 IMPORTANT | 🟔 **PARTIAL** | Configurable, needs testing | | #5 Data Migration | 🟔 IMPORTANT | āŒ **PENDING** | No built-in tools | | #6 Config Manager | šŸ”“ HIGH | āœ… **RESOLVED** | Comprehensive implementation | **Overall Status**: šŸŽ‰ **3 of 6 critical/high priority issues RESOLVED** --- ## Testing Recommendations ### 1. Test AWS Deployment with New Config System ```yaml # config/aws_iris_vector_rag.yaml database: iris: host: "3.84.250.46" port: 1972 namespace: "%SYS" username: "_SYSTEM" password: "SYS" storage: iris: table_name: "SQLUser.SourceDocuments" vector_dimension: 1024 embeddings: default_provider: "sentence_transformers" sentence_transformers: model_name: "sentence-transformers/all-MiniLM-L6-v2" device: "cpu" ``` ```python from iris_vector_rag.config.manager import ConfigurationManager from iris_vector_rag.storage.vector_store_iris import IRISVectorStore # Load AWS config config = ConfigurationManager(config_path="config/aws_iris_vector_rag.yaml") # Create vector store vector_store = IRISVectorStore(config_manager=config) # Test insert and search vector_store.insert_documents([...]) results = vector_store.search(query_vector, top_k=5) ``` ### 2. Test Environment Variable Override ```bash # Override config file settings export RAG_DATABASE__IRIS__HOST="3.84.250.46" export RAG_DATABASE__IRIS__NAMESPACE="%SYS" export RAG_STORAGE__IRIS__VECTOR_DIMENSION=1024 python3 test_aws_deployment.py ``` ### 3. Test IRIS EMBEDDING with NVIDIA NIM ```yaml iris_embedding: enabled: true default_config: model_name: "nvidia/nv-embedqa-e5-v5" device_preference: "cuda" batch_size: 32 ``` ### 4. Verify Schema Manager with SQLUser ```python from iris_vector_rag.storage.schema_manager import SchemaManager schema_manager = SchemaManager(connection_manager, config_manager) # Test with fully qualified table name schema_manager.create_table("SQLUser.ClinicalNoteVectors", vector_dimension=1024) ``` --- ## Migration Plan: Old Scripts → iris-vector-rag ### Phase 1: Configuration Migration āœ… **Old**: Manual connection in scripts ```python # scripts/aws/setup-iris-schema.py conn = iris.connect('3.84.250.46', 1972, '%SYS', '_SYSTEM', 'SYS') ``` **New**: iris-vector-rag configuration ```yaml # config/aws_iris_vector_rag.yaml database: iris: host: "3.84.250.46" namespace: "%SYS" ``` ```python from iris_vector_rag.config.manager import ConfigurationManager config = ConfigurationManager(config_path="config/aws_iris_vector_rag.yaml") ``` **Benefit**: No code changes for different environments --- ### Phase 2: Vector Store Migration **Old**: IRISVectorDBClient from local implementation ```python from src.vectorization.vector_db_client import IRISVectorDBClient client = IRISVectorDBClient( host="3.84.250.46", namespace="%SYS", vector_dimension=1024 ) ``` **New**: iris-vector-rag IRISVectorStore ```python from iris_vector_rag.storage.vector_store_iris import IRISVectorStore from iris_vector_rag.config.manager import ConfigurationManager config = ConfigurationManager(config_path="config/aws_config.yaml") vector_store = IRISVectorStore(config_manager=config) # Same operations, standardized API vector_store.insert_documents(documents) results = vector_store.search(query_vector, top_k=5) ``` **Benefit**: Standardized API, better maintained --- ### Phase 3: GraphRAG Integration (Future) Evaluate iris-vector-rag's entity extraction vs our custom implementation: ```yaml entity_extraction: enabled: true method: "llm_basic" entity_types: - "SYMPTOM" - "CONDITION" - "MEDICATION" ``` **Decision Point**: Use iris-vector-rag entities or keep custom extractor? --- ## Recommendations for Our Project ### Immediate Actions 1. āœ… **Update AWS GraphRAG Config** to use iris-vector-rag conventions ```yaml # Use RAG_ prefix for env vars instead of custom names database: iris: host: "${RAG_DATABASE__IRIS__HOST:-3.84.250.46}" ``` 2. āœ… **Test iris-vector-rag IRISVectorStore** with AWS IRIS - Verify %SYS namespace support - Test fully qualified table names (SQLUser.*) - Validate 1024-dim vectors work 3. āœ… **Document iris-vector-rag adoption** in project README - Show environment variable usage - Provide AWS deployment example - Update pain points with "RESOLVED" status ### Medium Term 4. **Migrate IRISVectorDBClient** → iris-vector-rag - Evaluate feature parity - Create migration guide - Update all scripts 5. **Contribute AWS Docs** to iris-vector-rag - Namespace access patterns - Cloud deployment guide - Troubleshooting section ### Future Considerations 6. **Evaluate IRIS EMBEDDING** for auto-vectorization 7. **Test entity extraction** pipeline vs custom implementation 8. **Benchmark performance** on AWS with HNSW tuning --- ## Feedback for iris-vector-rag Team (Updated) ### šŸŽ‰ Excellent Work On 1. āœ… **Environment Variable Support** - Solves critical cloud deployment issue 2. āœ… **Configurable Vector Dimensions** - Enables modern embedding models 3. āœ… **Configuration Manager** - Professional-grade implementation 4. āœ… **Schema Manager** - Reduces manual DDL work 5. āœ… **IRIS EMBEDDING** - Innovative native vectorization ### šŸ™ Still Needed 1. **Cloud Deployment Documentation** - AWS/Azure/GCP examples - Namespace access patterns - Common issues and solutions 2. **Data Migration Utilities** - Export/import scripts - Sync strategies - Validation tools 3. **Fully Qualified Table Name Testing** - Verify SQLUser.TableName works - Document schema qualification patterns 4. **Example Configs** - AWS deployment config - NVIDIA NIM integration - Multi-modal setups --- ## Conclusion The iris-vector-rag package has made **significant improvements** that address our critical pain points. With environment variable support and configurable vector dimensions, **cloud deployments are now viable without code modifications**. **Status Summary**: - āœ… **3 CRITICAL issues RESOLVED** (env vars, dimensions, config manager) - 🟔 **2 issues PARTIALLY addressed** (namespace docs, table names) - āŒ **1 issue PENDING** (data migration) **Overall**: šŸŽ‰ **Major improvements! Ready for AWS deployment testing.** **Next Steps**: 1. Test iris-vector-rag with AWS configuration 2. Verify all features work with %SYS namespace and SQLUser schema 3. Consider migrating from custom IRISVectorDBClient to iris-vector-rag 4. Contribute AWS deployment docs back to project --- **Status**: āœ… Review complete - iris-vector-rag significantly improved! **Date**: December 12, 2025 **Recommendation**: **Proceed with iris-vector-rag adoption for AWS deployment**

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/isc-tdyar/medical-graphrag-assistant'

If you have feedback or need assistance with the MCP directory API, please join our Discord server