Skip to main content
Glama

AnyDB MCP Server

by iamayuppie

AnyDB MCP Server

A Model Context Protocol (MCP) server that provides intelligent database operations through natural language processing. This server integrates SQLite databases with Ollama for AI-powered SQL generation and execution.

Features

Core Database Operations

  • Natural Language to SQL: Convert plain English instructions into SQL queries using Ollama
  • Universal Database Operations: Works with any SQLite table/entity without predefined schemas
  • Automatic Schema Evolution: Dynamically adds columns to tables when new data requires them
  • MCP Integration: Seamlessly integrates with Claude Desktop and other MCP-compatible clients
  • Async Operations: Built on modern Python async/await for high performance
  • Safety First: Separate tools for read and write operations

Vector Database & RAG

  • File Embedding: Automatically convert files into vector embeddings for semantic search
  • Semantic Search: Find relevant content using natural language queries instead of exact keyword matching
  • RAG Support: Enable Claude Desktop to answer questions about uploaded documents with context
  • Smart Chunking: Intelligently splits large documents into overlapping chunks for better retrieval
  • Persistent Storage: ChromaDB-powered vector database with automatic embedding generation

Web Scraping & Knowledge Base (NEW!)

  • URL Scraping: Extract and store content from web pages automatically
  • Smart Content Extraction: Clean HTML and extract meaningful text with metadata
  • URL Security: Built-in validation and security checks to prevent malicious URLs
  • Semantic Web Search: Query scraped web content using natural language
  • Web Knowledge Management: List, search, and manage scraped web pages

Available Tools

Database Tools

1. query_entity

Query any table with natural language instructions.

Parameters:

  • entity_name (required): Name of the table to query
  • instruction (optional): Natural language query instruction (default: "SELECT all records")

Example: Query users table for active accounts

2. insert_entity

Insert records into any table using natural language descriptions. Automatically adds new columns if the data contains fields not present in the current table schema.

Parameters:

  • entity_name (required): Name of the table
  • data (required): Data to insert (JSON or natural description)

Example: Insert a new user with email and name Auto-Schema: If inserting "user with name John, email john@test.com, and premium status" into a table that only has name/email columns, the system will automatically add a "status" column

3. update_entity

Update records in any table with conditions. Automatically adds new columns if the update introduces new fields.

Parameters:

  • entity_name (required): Name of the table
  • instruction (required): Update instruction
  • conditions (optional): WHERE conditions

Example: Update user status to active where email matches Auto-Schema: If updating with "set premium status to gold and loyalty points to 100" on a table without these columns, they will be added automatically

4. delete_entity

Delete records from any table with optional conditions.

Parameters:

  • entity_name (required): Name of the table
  • conditions (optional): WHERE conditions for deletion

Example: Delete inactive users older than 30 days

5. create_table

Create new tables with AI-generated schemas.

Parameters:

  • entity_name (required): Name of the new table
  • schema_description (required): Description of table schema

Example: Create a products table with name, price, and category

6. sql_query

Execute raw SQL SELECT queries directly.

Parameters:

  • query (required): SQL query to execute

Example: Direct SQL for complex joins and analytics

7. sql_execute

Execute raw SQL modification queries (INSERT, UPDATE, DELETE, CREATE, etc.).

Parameters:

  • query (required): SQL query to execute

Example: Direct SQL for complex data modifications

Vector Database Tools (NEW!)

8. add_file_to_vector_db

Add a file to the vector database for semantic search and RAG (Retrieval Augmented Generation).

Parameters:

  • filename (required): Name of the file
  • content (required): Content of the file (text)
  • metadata (optional): Optional metadata for the file

Example: Add a document about machine learning for later semantic search

9. search_vector_db

Search the vector database for relevant file content using semantic similarity.

Parameters:

  • query (required): Search query for semantic similarity
  • max_results (optional): Maximum number of results to return (default: 5)

Example: Find documents related to "neural networks and AI"

10. list_vector_files

List all files stored in the vector database.

Parameters: None

Example: View all documents available for search

11. remove_file_from_vector_db

Remove a file from the vector database.

Parameters:

  • filename (required): Name of the file to remove

Example: Delete outdated documents from the knowledge base

Web Scraping Tools (NEW!)

12. scrape_url

Scrape content from a web page and store it in the vector database for semantic search and RAG.

Parameters:

  • url (required): URL of the web page to scrape
  • custom_filename (optional): Custom filename for the scraped content

Example: Scrape a Wikipedia article or documentation page for later querying

13. query_web_content

Query scraped web page content using semantic search to find relevant information.

Parameters:

  • query (required): Search query for finding relevant web content
  • max_results (optional): Maximum number of results to return (default: 5)

Example: Search scraped web pages for information about specific topics

14. list_scraped_pages

List all scraped web pages stored in the vector database with metadata.

Parameters: None

Example: View all websites you've scraped and stored

15. remove_scraped_page

Remove a scraped web page from the vector database.

Parameters:

  • filename (required): Filename of the scraped page to remove

Example: Clean up outdated or unwanted scraped web content

Installation

Prerequisites

  • Python 3.8+
  • Ollama running locally
  • Claude Desktop (for MCP integration)

Setup

  1. Clone the repository:
git clone https://github.com/iamayuppie/AnyDbApp.git cd AnyDbApp
  1. Install dependencies:
pip install -r requirements.txt
  1. Start Ollama:
ollama serve --port 1434 ollama pull llama3.1 # or your preferred model
  1. Run the server:
python main.py

Claude Desktop Integration

Add this server to Claude Desktop by editing your config file:

Windows: %APPDATA%\Claude\claude_desktop_config.json

macOS: ~/Library/Application Support/Claude/claude_desktop_config.json

{ "mcpServers": { "anydb": { "command": "python", "args": ["C:\\Path\\To\\AnyDbApp\\mcp_server_stdio.py"], "env": { "PYTHONPATH": "C:\\Path\\To\\AnyDbApp" } } } }

Restart Claude Desktop to connect the server.

Configuration

Ollama Settings

Default configuration in mcp_server.py:

  • Host: localhost
  • Port: 1434
  • Model: llama3.1

Database Settings

  • Default DB: anydb.sqlite (created automatically)
  • Location: Same directory as the server
  • Type: SQLite with foreign key constraints enabled

Usage Examples

Once integrated with Claude Desktop, you can use natural language:

Database Operations

  • "Create a users table with id, name, email, and created_at fields"
  • "Show me all active users from the last 30 days"
  • "Insert a new product: iPhone 15, price $999, category Electronics"
  • "Update all pending orders to processed where amount > 100"
  • "Delete test users where email contains 'test'"

Smart Schema Evolution

  • "Insert a book: Title 'AI Handbook', Author 'Jane Doe', ISBN '123456', Format 'Hardcover'" (automatically adds Format column if missing)
  • "Add employee with name John, salary 75000, department IT, and remote status" (adds department and remote columns as needed)
  • "Update product with warranty period 2 years and eco-friendly rating A+" (dynamically expands product schema)

Vector Database & File Operations

  • "Add this document to the knowledge base" (when attaching a file in Claude Desktop)
  • "Search for information about machine learning algorithms"
  • "Find documents related to user authentication and security"
  • "What does the uploaded contract say about payment terms?"
  • "Show me all documents I've added to the database"
  • "Remove the old privacy policy document"

Web Scraping & Knowledge Base

  • "Scrape this Wikipedia article about neural networks: https://en.wikipedia.org/wiki/Neural_network"
  • "Save the content from this blog post for later reference"
  • "What information did I scrape about machine learning from that research paper website?"
  • "Search my scraped web pages for information about Python best practices"
  • "Show me all the web pages I've scraped and stored"
  • "Remove the outdated documentation I scraped last month"

Architecture

┌─────────────────┐ ┌──────────────┐ ┌─────────────────┐ │ Claude │────│ MCP Server │────│ Ollama │ │ Desktop │ │ (stdio) │ │ (localhost) │ │ + File Upload │ │ │ │ │ └─────────────────┘ └──────────────┘ └─────────────────┘ │ │ ▼ ▼ ┌──────────────────┐ ┌─────────────────┐ │ Dual Storage │ │ Web Scraper │ │ │ │ Engine │ │ ┌──────────────┐ │ │ │ │ │ SQLite │ │◄───┤ • URL Validation│ │ │ Database │ │ │ • Content Extract│ │ └──────────────┘ │ │ • Security Checks│ │ │ └─────────────────┘ │ ┌──────────────┐ │ │ │ │ ChromaDB │ │◄────────────┘ │ │ Vector Store │ │ ← Web Content + │ └──────────────┘ │ Document Embeddings └──────────────────┘ & Semantic Search

Development

Project Structure

AnyDbApp/ ├── main.py # Clean entry point with startup info ├── mcp_server.py # MCP server setup and tool routing ├── dbtool.py # Database operations and SQL tools ├── filetool.py # Vector database and file operations ├── webscrapertool.py # Web scraping and content extraction ├── requirements.txt # Python dependencies ├── pyproject.toml # Project metadata └── README.md # This file

Key Components

Core Modules:

  • main.py: Entry point with dependency checking and startup information
  • mcp_server.py: MCP protocol implementation, tool registration, and request routing
  • dbtool.py: Database operations, SQL generation, and data management
  • filetool.py: Vector database operations, file processing, and semantic search
  • webscrapertool.py: Web scraping, content extraction, and URL processing

Business Logic Classes:

  • DatabaseManager: Handles async SQLite operations and database connections
  • DatabaseTools: High-level database operations with natural language support
  • OllamaClient: Manages AI model communication for SQL generation
  • VectorDatabaseManager: Manages ChromaDB operations and document embeddings
  • FileTools: High-level file operations and semantic search functionality
  • WebScraperManager: Handles web page fetching, content extraction, and URL validation
  • WebScraperTools: High-level web scraping operations with vector database integration

Troubleshooting

Common Issues

  1. Server won't start: Check if Ollama is running on port 1434
  2. No tools showing in Claude: Verify MCP config path and restart Claude Desktop
  3. SQL errors: Check table names and ensure proper natural language descriptions
  4. Ollama connection failed: Confirm Ollama model is installed and accessible

Debug Mode

Run with Python's verbose mode for detailed logs:

python -v main.py

License

This project is open source. See LICENSE file for details.

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests if applicable
  5. Submit a pull request

Support

For issues and questions:

  • Check the troubleshooting section
  • Review Ollama and MCP documentation
  • Open an issue on the repository
-
security - not tested
F
license - not found
-
quality - not tested

local-only server

The server can only run on the client's local machine because it depends on local resources.

Enables natural language database operations and semantic document search through SQLite and vector database integration. Converts plain English instructions into SQL queries and provides RAG capabilities for uploaded documents.

  1. Features
    1. Core Database Operations
    2. Vector Database & RAG
    3. Web Scraping & Knowledge Base (NEW!)
  2. Available Tools
    1. Database Tools
    2. Vector Database Tools (NEW!)
    3. Web Scraping Tools (NEW!)
  3. Installation
    1. Prerequisites
    2. Setup
  4. Claude Desktop Integration
    1. Configuration
      1. Ollama Settings
      2. Database Settings
    2. Usage Examples
      1. Database Operations
      2. Smart Schema Evolution
      3. Vector Database & File Operations
      4. Web Scraping & Knowledge Base
    3. Architecture
      1. Development
        1. Project Structure
        2. Key Components
      2. Troubleshooting
        1. Common Issues
        2. Debug Mode
      3. License
        1. Contributing
          1. Support

            Related MCP Servers

            • -
              security
              F
              license
              -
              quality
              Enables querying log data stored in SQLite databases through the Model Context Protocol, allowing natural language interactions with log analysis.
              Last updated -
            • -
              security
              A
              license
              -
              quality
              Handles SQL query execution for a natural language interface to SQLite databases, enabling users to interact with databases using plain English rather than writing SQL manually.
              Last updated -
              1
              MIT License
            • A
              security
              A
              license
              A
              quality
              An AI-powered SQLite assistant that converts natural language to SQL queries with full schema awareness, enabling users to interact with databases using conversational language.
              Last updated -
              5
              1
              MIT License
              • Apple
              • Linux
            • -
              security
              F
              license
              -
              quality
              A server that exposes SQLite database operations as tools, allowing natural language interactions with a database through LlamaIndex and Ollama LLM integration.
              Last updated -
              1
              • Apple

            View all related MCP servers

            MCP directory API

            We provide all the information about MCP servers via our MCP API.

            curl -X GET 'https://glama.ai/api/mcp/v1/servers/iamayuppie/AnyDbApp'

            If you have feedback or need assistance with the MCP directory API, please join our Discord server