Skip to main content
Glama

firecrawlsearchagent_firecrawl_scrape_url

Extract full content from a specific URL using this tool. It retrieves complete raw web page data for analysis or integration into workflows, with customizable wait time for page loading.

Instructions

Scrape full contents from a specific URL. This provides complete raw web contents from individual web pages.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
urlYesThe URL to scrape and analyze
wait_timeNoTime to wait for page to load in milliseconds (default: 5000)

Implementation Reference

  • The MCP call_tool handler that executes any registered tool, including 'firecrawlsearchagent_firecrawl_scrape_url', by proxying to the remote Mesh API after looking up the agent and tool details.
    async def call_tool(name: str, arguments: dict) -> List[types.TextContent]: """Call the specified tool with the given arguments.""" try: if name not in self.tool_registry: raise ValueError(f"Unknown tool: {name}") tool_info = self.tool_registry[name] result = await self.execute_tool( agent_id=tool_info["agent_id"], tool_name=tool_info["tool_name"], tool_arguments=arguments, ) # Convert result to TextContent return [types.TextContent(type="text", text=str(result))] except Exception as e: logger.error(f"Error calling tool {name}: {e}") raise ValueError(f"Failed to call tool {name}: {str(e)}") from e
  • Dynamic registration of tools from agent metadata into tool_registry, constructing tool names like 'firecrawlsearchagent_firecrawl_scrape_url' via f\"{agent_id.lower()}_{tool_name}\". Enabled based on config.json per agent."},{
    for tool in agent_data.get("tools", []): if tool.get("type") == "function": function_data = tool.get("function", {}) tool_name = function_data.get("name") if not tool_name: continue # Check if this tool is enabled based on configuration if not self.is_tool_enabled(agent_id, tool_name): logger.debug( f"Skipping tool {tool_name} for agent {agent_id} (not in config)" # noqa: E501 ) tools_skipped += 1 continue # Create a unique tool ID tool_id = f"{agent_id.lower()}_{tool_name}" # Get parameters or create default schema parameters = function_data.get("parameters", {}) if not parameters: parameters = { "type": "object", "properties": {}, "required": [], } # Store tool info tool_registry[tool_id] = { "agent_id": agent_id, "tool_name": tool_name, "description": function_data.get("description", ""), "parameters": parameters, } tools_enabled += 1 logger.debug(f"Enabled tool: {tool_id}")
  • Provides the input schema for all tools, including the target tool, from the loaded agent metadata parameters.
    @app.list_tools() async def list_tools() -> List[types.Tool]: """List all available tools.""" return [ types.Tool( name=tool_id, description=tool_info["description"], inputSchema=tool_info["parameters"], ) for tool_id, tool_info in self.tool_registry.items() ]
  • Helper function that actually calls the remote Mesh API to execute the tool on the agent, used by the handler.
    async def execute_tool( self, agent_id: str, tool_name: str, tool_arguments: Dict[str, Any] ) -> Dict[str, Any]: """Execute a tool on a mesh agent. Args: agent_id: ID of the agent to execute the tool on tool_name: Name of the tool to execute tool_arguments: Arguments to pass to the tool Returns: Tool execution result Raises: ToolExecutionError: If there's an error executing the tool """ request_data = { "agent_id": agent_id, "input": {"tool": tool_name, "tool_arguments": tool_arguments}, } # Add API key if available if Config.HEURIST_API_KEY: request_data["api_key"] = Config.HEURIST_API_KEY try: result = await call_mesh_api( "mesh_request", method="POST", json=request_data ) return result.get("data", result) # Prefer the 'data' field if it exists except MeshApiError as e: # Re-raise API errors with clearer context raise ToolExecutionError(str(e)) from e except Exception as e: logger.error(f"Error calling {agent_id} tool {tool_name}: {e}") raise ToolExecutionError( f"Failed to call {agent_id} tool {tool_name}: {str(e)}" ) from e
  • Low-level helper to make HTTP calls to the Mesh API endpoint, used by execute_tool.
    async def call_mesh_api( path: str, method: str = "GET", json: Dict[str, Any] = None ) -> Dict[str, Any]: """Helper function to call the mesh API endpoint. Args: path: API path to call method: HTTP method to use json: Optional JSON payload Returns: API response as dictionary Raises: MeshApiError: If there's an error calling the API """ async with aiohttp.ClientSession() as session: url = f"{Config.HEURIST_API_ENDPOINT}/{path}" try: headers = {} if Config.HEURIST_API_KEY: headers["X-HEURIST-API-KEY"] = Config.HEURIST_API_KEY async with session.request( method, url, json=json, headers=headers ) as response: if response.status != 200: error_text = await response.text() raise MeshApiError(f"Mesh API error: {error_text}") return await response.json() except aiohttp.ClientError as e: logger.error(f"Error calling mesh API: {e}") raise MeshApiError(f"Failed to connect to mesh API: {str(e)}") from e

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/heurist-network/heurist-mesh-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server