Skip to main content
Glama

elfatwitterintelligenceagent_get_trending_tokens

Analyze Twitter in real-time to identify trending cryptocurrencies and tokens, their popularity, and sentiment indicators. Use this tool to discover actively discussed digital assets on social media.

Instructions

Get current trending tokens on Twitter. This tool identifies which cryptocurrencies and tokens are generating the most buzz on Twitter right now. The results include token names, their relative popularity, and sentiment indicators. Use this when you want to discover which cryptocurrencies are currently being discussed most actively on social media. Data comes from ELFA API and represents real-time trends.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
time_windowNoTime window to analyze24h

Implementation Reference

  • MCP call_tool handler that executes the tool by proxying to the Mesh API after parsing the prefixed tool name to extract agent ID and original tool name.
    async def call_tool(name: str, arguments: dict) -> List[types.TextContent]: """Call the specified tool with the given arguments.""" try: if name not in self.tool_registry: raise ValueError(f"Unknown tool: {name}") tool_info = self.tool_registry[name] result = await self.execute_tool( agent_id=tool_info["agent_id"], tool_name=tool_info["tool_name"], tool_arguments=arguments, ) # Convert result to TextContent return [types.TextContent(type="text", text=str(result))] except Exception as e: logger.error(f"Error calling tool {name}: {e}") raise ValueError(f"Failed to call tool {name}: {str(e)}") from e
  • Dynamically registers tools from agent metadata, constructing tool names as '{agent_id.lower()}_{tool_name}', e.g., 'elfatwitterintelligenceagent_get_trending_tokens' for agent 'ElfaTwitterIntelligenceAgent'.
    async def process_tool_metadata(self) -> Dict[str, Dict[str, Any]]: """Process agent metadata and extract tool information. Returns: Dictionary mapping tool IDs to tool information """ agents_metadata = await self.fetch_agent_metadata() tool_registry = {} # Log filtering status if self.supported_agents is not None: logger.info( f"Filtering tools using supported agent list ({len(self.supported_agents)} agents specified)" ) else: logger.info("Loading tools from all available agents (no filter applied)") for agent_id, agent_data in agents_metadata.items(): # Skip agents not in our supported list (if a list is specified) if ( self.supported_agents is not None and agent_id not in self.supported_agents ): continue # Process tools for this agent for tool in agent_data.get("tools", []): if tool.get("type") == "function": function_data = tool.get("function", {}) tool_name = function_data.get("name") if not tool_name: continue # Create a unique tool ID tool_id = f"{agent_id.lower()}_{tool_name}" # Get parameters or create default schema parameters = function_data.get("parameters", {}) if not parameters: parameters = { "type": "object", "properties": {}, "required": [], } # Store tool info tool_registry[tool_id] = { "agent_id": agent_id, "tool_name": tool_name, "description": function_data.get("description", ""), "parameters": parameters, } # Log which agents contributed tools agents_with_tools = set(info["agent_id"] for info in tool_registry.values()) logger.info(f"Loaded tools from agents: {', '.join(sorted(agents_with_tools))}") logger.info(f"Successfully loaded {len(tool_registry)} tools") return tool_registry
  • Configuration listing supported agents, including 'ElfaTwitterIntelligenceAgent' whose tools are registered with the 'elfatwitterintelligenceagent_' prefix.
    DEFAULT_AGENTS = [ "CoinGeckoTokenInfoAgent", "DexScreenerTokenInfoAgent", "ElfaTwitterIntelligenceAgent", "ExaSearchAgent", "TwitterInfoAgent", "AIXBTProjectInfoAgent", "EtherscanAgent", "EvmTokenInfoAgent", "FundingRateAgent", "UnifaiTokenAnalysisAgent", "YahooFinanceAgent", "ZerionWalletAnalysisAgent" ]
  • MCP list_tools decorator that exposes all registered tools, including the target tool with its schema from metadata.
    @app.list_tools() async def list_tools() -> List[types.Tool]: """List all available tools.""" return [ types.Tool( name=tool_id, description=tool_info["description"], inputSchema=tool_info["parameters"], ) for tool_id, tool_info in self.tool_registry.items() ]
  • Helper that sends the tool execution request to the Mesh API endpoint.
    async def execute_tool( self, agent_id: str, tool_name: str, tool_arguments: Dict[str, Any] ) -> Dict[str, Any]: """Execute a tool on a mesh agent. Args: agent_id: ID of the agent to execute the tool on tool_name: Name of the tool to execute tool_arguments: Arguments to pass to the tool Returns: Tool execution result Raises: ToolExecutionError: If there's an error executing the tool """ request_data = { "agent_id": agent_id, "input": {"tool": tool_name, "tool_arguments": tool_arguments}, } # Add API key if available if Config.HEURIST_API_KEY: request_data["api_key"] = Config.HEURIST_API_KEY try: result = await call_mesh_api( "mesh_request", method="POST", json=request_data ) return result.get("data", result) # Prefer the 'data' field if it exists except MeshApiError as e: # Re-raise API errors with clearer context raise ToolExecutionError(str(e)) from e except Exception as e: logger.error(f"Error calling {agent_id} tool {tool_name}: {e}") raise ToolExecutionError( f"Failed to call {agent_id} tool {tool_name}: {str(e)}" ) from e

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/heurist-network/heurist-mesh-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server