Skip to main content
Glama

dexscreenertokeninfoagent_search_pairs

Search for decentralized exchange trading pairs by token name, symbol, or address. Retrieve price, volume, liquidity, and exchange availability across major DEXs and blockchains via DexScreener data.

Instructions

Search for trading pairs on decentralized exchanges by token name, symbol, or address. This tool helps you find specific trading pairs across multiple DEXs and blockchains. It returns information about the pairs including price, volume, liquidity, and the exchanges where they're available. Data comes from DexScreener and covers major DEXs on most blockchains. The search results may be incomplete if the token is not traded on any of the supported chains.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
search_termYesSearch term (token name, symbol, or address)

Implementation Reference

  • DexScreenerTokenInfoAgent is explicitly listed in the default supported agents, enabling registration of its tools such as dexscreenertokeninfoagent_search_pairs.
    # Default supported agents DEFAULT_AGENTS = [ "CoinGeckoTokenInfoAgent", "DexScreenerTokenInfoAgent", "ElfaTwitterIntelligenceAgent", "ExaSearchAgent", "TwitterInfoAgent", "AIXBTProjectInfoAgent", "EtherscanAgent", "EvmTokenInfoAgent", "FundingRateAgent", "UnifaiTokenAnalysisAgent", "YahooFinanceAgent", "ZerionWalletAnalysisAgent" ]
  • Dynamic tool registration from agent metadata: constructs tool_id as lowercase(agent_id)_tool_name, matching 'dexscreenertokeninfoagent_search_pairs' for DexScreenerTokenInfoAgent's 'search_pairs' tool; stores schema, description, etc. in registry.
    for tool in agent_data.get("tools", []): if tool.get("type") == "function": function_data = tool.get("function", {}) tool_name = function_data.get("name") if not tool_name: continue # Create a unique tool ID tool_id = f"{agent_id.lower()}_{tool_name}" # Get parameters or create default schema parameters = function_data.get("parameters", {}) if not parameters: parameters = { "type": "object", "properties": {}, "required": [], } # Store tool info tool_registry[tool_id] = { "agent_id": agent_id, "tool_name": tool_name, "description": function_data.get("description", ""), "parameters": parameters, } # Log which agents contributed tools
  • Core execution handler: takes agent_id and tool_name (parsed from tool_id), sends POST to Mesh API /mesh_request with tool and arguments, returns result. This implements the logic for dexscreenertokeninfoagent_search_pairs.
    async def execute_tool( self, agent_id: str, tool_name: str, tool_arguments: Dict[str, Any] ) -> Dict[str, Any]: """Execute a tool on a mesh agent. Args: agent_id: ID of the agent to execute the tool on tool_name: Name of the tool to execute tool_arguments: Arguments to pass to the tool Returns: Tool execution result Raises: ToolExecutionError: If there's an error executing the tool """ request_data = { "agent_id": agent_id, "input": {"tool": tool_name, "tool_arguments": tool_arguments}, } # Add API key if available if Config.HEURIST_API_KEY: request_data["api_key"] = Config.HEURIST_API_KEY try: result = await call_mesh_api( "mesh_request", method="POST", json=request_data ) return result.get("data", result) # Prefer the 'data' field if it exists except MeshApiError as e: # Re-raise API errors with clearer context raise ToolExecutionError(str(e)) from e except Exception as e: logger.error(f"Error calling {agent_id} tool {tool_name}: {e}") raise ToolExecutionError( f"Failed to call {agent_id} tool {tool_name}: {str(e)}" ) from e
  • MCP call_tool handler: looks up tool_info from registry by name (e.g. dexscreenertokeninfoagent_search_pairs), extracts agent_id/tool_name, calls execute_tool with arguments, returns result as TextContent.
    @app.call_tool() async def call_tool(name: str, arguments: dict) -> List[types.TextContent]: """Call the specified tool with the given arguments.""" try: if name not in self.tool_registry: raise ValueError(f"Unknown tool: {name}") tool_info = self.tool_registry[name] result = await self.execute_tool( agent_id=tool_info["agent_id"], tool_name=tool_info["tool_name"], tool_arguments=arguments, ) # Convert result to TextContent return [types.TextContent(type="text", text=str(result))] except Exception as e: logger.error(f"Error calling tool {name}: {e}") raise ValueError(f"Failed to call tool {name}: {str(e)}") from e
  • MCP list_tools exposes the schema (inputSchema) from remote agent metadata for each registered tool, including dexscreenertokeninfoagent_search_pairs.
    @app.list_tools() async def list_tools() -> List[types.Tool]: """List all available tools.""" return [ types.Tool( name=tool_id, description=tool_info["description"], inputSchema=tool_info["parameters"], ) for tool_id, tool_info in self.tool_registry.items() ]

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/heurist-network/heurist-mesh-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server