Skip to main content
Glama
# MCP-Titan Architecture Analysis & Implementation Roadmap ## Executive Summary This document provides a comprehensive analysis of the mcp-titan architecture and presents a strategic roadmap for enhancing its capabilities with modern LLM technologies, memory-augmented transformers, and optimization techniques. --- ## 1. Current MCP-Titan Architecture Audit ### Integration Points & MCP Protocol **How Titan Plugs into External LLMs via MCP:** - **MCP Server**: Acts as a memory service provider through standardized tool calls - **Protocol Interface**: Exposes 16 sophisticated memory tools through JSON-RPC 2.0 - **Memory State Management**: Persistent neural memory across LLM interactions - **Real-time Learning**: Online updates without full model retraining **Core Architecture Components:** ```mermaid graph TD A[External LLM] -->|MCP Protocol| B[TitanMemoryServer] B --> C[TitanMemoryModel] C --> D[Encoder TF.js] C --> E[Memory Retrieval HNSW] C --> F[Decoder] D --> G[Transformer Stack] E --> H[Hierarchical Memory] F --> I[Online Update] ``` ### Abstraction Seams for Model Replacement **Primary Swap Points:** 1. **`encodeText(text: string): Promise<tf.Tensor1D>`** - Current: BPE tokenizer + embedding - Replaceable: Any text encoder (SentenceTransformers, model-specific) - Interface: String → Fixed-dimension tensor 2. **`forward(input: ITensor, state?: IMemoryState)`** - Current: Transformer stack + memory attention - Replaceable: Any sequence model (Mamba, RWKV, RetNet) - Interface: Tensor + memory state → prediction + memory update 3. **`trainStep(x_t: ITensor, x_next: ITensor, state: IMemoryState)`** - Current: MSE loss + contrastive learning - Replaceable: Any loss function + RL objectives - Interface: Current/next tensors → loss + gradients **Configurable Layers:** - Transformer stack (6 layers default, max 12) - Memory projector (768→1024 dimensions) - Similarity network (cosine similarity) - Quantization pipeline (8-bit support) ### Hardware/Runtime Constraints **Current Requirements:** - Node.js 18+ (ES modules, native fetch) - TensorFlow.js-node (CPU/GPU acceleration) - Memory: ~2-8GB RAM (depending on memory slots) - VRAM: Optional GPU acceleration via CUDA **Bottlenecks:** - TF.js tensor operations (slower than native PyTorch) - Memory serialization/deserialization overhead - Single-threaded JavaScript runtime --- ## 2. Qwen3 & DeepSeek Evaluation for Self-Hosting ### Model Specifications (Latest Known) **Qwen3 (Qwen2.5 Latest)** - **Context Length**: 128K-1M tokens - **License**: Apache 2.0 (commercial friendly) - **Sizes**: 0.5B-72B parameters - **Requirements**: 8-24GB VRAM for 7B-14B models - **Tokenizer**: Custom tokenizer (multilingual) **DeepSeek V3** - **Context Length**: 64K-128K tokens - **License**: MIT (fully open) - **Sizes**: 7B-67B parameters - **Requirements**: 16-40GB VRAM for optimal performance - **Tokenizer**: SentencePiece-based ### MCP Adapter Prototype Design ```typescript interface LLMAdapter { initialize(config: ModelConfig): Promise<void>; generate(prompt: string, memory: MemoryContext): Promise<string>; embed(text: string): Promise<number[]>; tokenize(text: string): Promise<number[]>; } class DeepSeekAdapter implements LLMAdapter { private vllm: VLLMClient; async initialize(config: ModelConfig) { // Initialize vLLM with DeepSeek model this.vllm = new VLLMClient({ model: "deepseek-ai/deepseek-llm-7b-chat", tensor_parallel_size: config.gpuCount, gpu_memory_utilization: 0.85 }); } async generate(prompt: string, memory: MemoryContext) { const enrichedPrompt = this.enrichWithMemory(prompt, memory); return await this.vllm.generate(enrichedPrompt); } } ``` ### Compatibility with Titan Contract **init_model → forward_pass Flow:** 1. **Compatible**: Both models support embeddings extraction 2. **Tokenizer Alignment**: Requires adapter layer for tokenizer differences 3. **Memory Integration**: Works through prompt enrichment + retrieval **Performance Estimates:** - **Latency**: 50-200ms (vs 500-2000ms for remote Claude) - **RAM**: 16-32GB for 7B models - **VRAM**: 8-16GB for inference - **Throughput**: 20-50 tokens/sec ### SEAL Technology Integration **SEAL (Self-Adapting Language Models) Key Features:** - Continual learning without catastrophic forgetting - Adaptive memory allocation - Online parameter updates **Integration Points with Titan:** - Replace static memory slots with adaptive allocation - Implement SEAL's continual learning for memory updates - Use SEAL's forgetting mechanisms for memory pruning --- ## 3. Native "Adaptive Memory" LLMs Timeline ### Current State & Research Progress **Transformer² (Google)** - **Status**: Research phase, no open-source release - **Timeline**: 12-18 months for academic papers, 24+ months for OSS - **Features**: Native memory attention, quadratic→linear complexity **RetNet (Microsoft)** - **Status**: Open research, some implementations available - **Timeline**: 6-12 months for production-ready versions - **Features**: Linear complexity, parallel training, recurrent inference **HyperAttention** - **Status**: Early research, proof-of-concept only - **Timeline**: 18-24 months for practical implementations - **Features**: Constant-time attention, infinite context **Mamba/State Space Models** - **Status**: Mature research, growing adoption - **Timeline**: 3-6 months for TF.js/ONNX support - **Features**: Linear complexity, strong long-range modeling ### Integration Effort Assessment ``` Gantt Chart (Next 12 Months): Q1 2025: Mamba/RWKV prototyping (Medium effort) Q2 2025: RetNet early adoption (High effort) Q3 2025: SEAL integration (Medium effort) Q4 2025: Transformer² evaluation (Low effort - if available) Effort Levels: - Low: Drop-in replacement - Medium: Architecture modifications needed - High: Significant redesign required ``` --- ## 4. Reinforcement Learning Diversity Analysis ### Literature Review Findings **Dr. GRPO (Diversity-Regularized Policy Optimization)** - Encourages diverse action selection - Reduces mode collapse in memory retrieval - Application: Memory promotion/demotion policies **Dreamer Architecture** - World model learning + policy optimization - Applicable to memory state prediction - Could model long-term memory dynamics **Integration Points in Titan:** 1. **Memory Pruning Policy** ```typescript class RLMemoryPruning { private policy: PolicyNetwork; selectMemoriesToPrune(memoryState: IMemoryState): number[] { // RL-based selection vs current LRU return this.policy.selectActions(memoryState); } } ``` 2. **Retrieval Strategy** - Current: Cosine similarity + recency - RL: Learned retrieval policy maximizing downstream performance 3. **Memory Promotion Rules** - Current: Fixed thresholds - RL: Adaptive promotion based on task performance ### Experimental Protocol **Synthetic Task Design:** - Memory-dependent question answering - Catastrophic forgetting measurement - Recall precision/recall metrics **Baseline vs RL Comparison:** - Static rules vs learned policies - Diversity metrics (memory usage distribution) - Performance on held-out tasks --- ## 5. Mamba/S4 Integration Investigation ### Architecture Replacement Strategy **Current Transformer Stack:** ```typescript // src/model.ts lines 658-688 this.transformerStack = []; for (let i = 0; i < this.config.transformerLayers; i++) { const layer = tf.sequential({ layers: [ tf.layers.dense({ units: this.config.hiddenDim }), tf.layers.layerNormalization(), // ... more transformer layers ] }); } ``` **Proposed Mamba Replacement:** ```typescript class MambaLayer { private ssm: StateSpaceModel; private conv1d: tf.layers.Layer; call(inputs: tf.Tensor): tf.Tensor { // Implement Mamba's selective state space const convOut = this.conv1d.apply(inputs); return this.ssm.forward(convOut); } } ``` ### Implementation Approaches 1. **TensorFlow.js Implementation** - Pure JS/TypeScript implementation - Pros: Native integration, same runtime - Cons: Performance limitations, complex state space ops 2. **ONNX Runtime Integration** - Pre-trained Mamba models via ONNX - Pros: Better performance, proven models - Cons: Additional dependencies, deployment complexity 3. **WebAssembly Bridge** - Compile native Mamba implementations to WASM - Pros: Near-native performance - Cons: Development complexity, larger bundle size ### Benchmarking Methodology **Metrics to Measure:** - Throughput (sequences/second) - Memory usage (peak RAM/VRAM) - Context length scaling (linear vs quadratic) - Quality on long-context tasks **Test Scenarios:** - Document summarization (16K+ tokens) - Code generation with long context - Conversational memory (multi-turn) --- ## 6. BitNet & Quantization Assessment ### Current Quantization Pipeline **Existing Implementation:** ```typescript // src/model.ts lines 2646-2776 private quantizeTensor(tensor: tf.Tensor): Uint8Array { // 8-bit quantization with per-dimension ranges const maxValue = 2 ** this.quantizationBits - 1; // ... quantization logic } ``` ### Aggressive Quantization Strategies **BitNet Integration:** 1. **Binary/Ternary Weights** - Replace float32 weights with {-1, 0, 1} - 32x memory reduction potential - Quality impact: 5-15% performance drop 2. **4-bit Quantization (QLoRA-style)** ```typescript class QuantizedMemory { private weights4bit: Uint8Array; private scales: Float32Array; quantize(weights: tf.Tensor): void { // Group-wise 4-bit quantization const groups = this.groupWeights(weights, 128); groups.forEach(group => { const scale = group.abs().max(); this.weights4bit = this.quantizeToNibbles(group, scale); this.scales.push(scale); }); } } ``` 3. **Mixed Precision Strategy** - Critical layers: FP16 - Memory tensors: 8-bit - Embeddings: 4-bit ### Benchmarking Results (Projected) | Strategy | Memory Savings | Quality Drop | Load Time | Inference Speed | |----------|---------------|--------------|-----------|----------------| | 8-bit | 75% | <2% | 40% faster | 15% slower | | 4-bit | 87.5% | 3-5% | 60% faster | 25% slower | | BitNet | 96.8% | 8-12% | 80% faster | 50% slower | **Recommendation:** 8-bit quantization meets the 30% memory savings with <5% quality loss threshold. --- ## 7. Implementation Roadmap & Recommendations ### Comparative Analysis Matrix | Solution | Cost | Latency | Effort | Licensing | Memory Savings | Quality | |----------|------|---------|--------|-----------|----------------|---------| | **Current (Claude)** | High | High | Low | Proprietary | N/A | Excellent | | **DeepSeek + 8-bit** | Low | Medium | Medium | MIT | 75% | Good | | **Qwen3 + Mamba** | Low | Low | High | Apache | 60% | Very Good | | **Native Memory LLM** | Low | Low | Low | TBD | 80% | Excellent | ### Phased Implementation Plan #### Phase 1: Self-Hosting Foundation (Next 3 months) **Primary Goal:** Reduce dependency on external APIs **Tasks:** - [ ] Implement DeepSeek adapter with vLLM backend - [ ] Integrate 8-bit quantization for memory tensors - [ ] Create MCP compatibility layer for self-hosted models - [ ] Benchmark performance vs remote Claude - [ ] Deploy on cloud infrastructure (AWS/GCP) **Deliverables:** - Working self-hosted alternative - 75% memory usage reduction - <500ms latency for typical queries - Cost reduction of 80-90% #### Phase 2: Architecture Modernization (Months 4-9) **Primary Goal:** Replace transformer backbone with modern architectures **Tasks:** - [ ] Prototype Mamba layer replacement in TF.js - [ ] Implement SEAL-style adaptive memory allocation - [ ] Add RL-based memory management policies - [ ] Create ONNX runtime bridge for better performance - [ ] Extensive benchmarking on long-context tasks **Deliverables:** - Linear complexity sequence modeling - Adaptive memory system - 5x improvement in long-context handling - Maintained or improved quality metrics #### Phase 3: Next-Generation Integration (Months 10-18) **Primary Goal:** Adopt native memory-augmented LLMs when available **Tasks:** - [ ] Evaluate Transformer² once released - [ ] Implement RetNet integration if suitable - [ ] Create unified adapter interface for multiple backends - [ ] Production deployment and monitoring - [ ] Community open-source contributions **Deliverables:** - Future-proof architecture - Multiple backend support - Production-ready system - Open-source community adoption ### Risk Assessment & Mitigation **Technical Risks:** 1. **TF.js Performance Limitations** - *Mitigation*: ONNX runtime bridge, WebAssembly optimization 2. **Model Compatibility Issues** - *Mitigation*: Robust adapter interfaces, extensive testing 3. **Memory Management Complexity** - *Mitigation*: Gradual migration, fallback mechanisms **Business Risks:** 1. **Faster Evolution of External APIs** - *Mitigation*: Hybrid approach, API + self-hosted options 2. **Resource Requirements** - *Mitigation*: Efficient quantization, cloud deployment options ### Success Metrics **Short-term (3 months):** - 80% cost reduction vs external APIs - <2x latency increase vs remote models - 75% memory usage reduction **Medium-term (9 months):** - Linear scaling for context lengths >32K - 90% memory efficiency improvement - Quality parity with current system **Long-term (18 months):** - Native memory LLM integration - 10x improvement in cost-effectiveness - Industry-leading memory-augmented system --- ## Engineering Backlog Tasks ### Immediate (Sprint 1-2) - [ ] Set up vLLM development environment - [ ] Create DeepSeek model adapter interface - [ ] Implement basic quantization for memory tensors - [ ] Write integration tests for MCP compatibility ### Short-term (Sprint 3-8) - [ ] Deploy self-hosted DeepSeek on cloud infrastructure - [ ] Benchmark latency and quality vs Claude - [ ] Implement SEAL adaptive memory allocation - [ ] Create monitoring and observability tools ### Medium-term (Sprint 9-20) - [ ] Research and prototype Mamba integration - [ ] Implement RL-based memory management - [ ] Create ONNX runtime bridge - [ ] Extensive performance optimization ### Long-term (Sprint 21+) - [ ] Evaluate and integrate next-generation memory LLMs - [ ] Production deployment and scaling - [ ] Open-source community contributions - [ ] Research novel memory architectures --- This roadmap provides a strategic path forward for mcp-titan, balancing immediate practical needs with long-term architectural evolution. The phased approach allows for incremental progress while maintaining system stability and performance.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/henryhawke/mcp-titan'

If you have feedback or need assistance with the MCP directory API, please join our Discord server