Skip to main content
Glama

Graphistry MCP

Official
by graphistry

visualize_graph

Create interactive GPU-accelerated graph visualizations from structured data to analyze and explore complex network relationships, including standard graphs and hypergraphs.

Instructions

Visualize a graph using Graphistry's GPU-accelerated renderer. Args: graph_type (str, optional): Type of graph to visualize. Must be one of "graph" (two-way edges, default), "hypergraph" (many-to-many edges). graph_data (dict): Dictionary describing the graph to visualize. Fields: - edges (list, required): List of edges, each as a dict with at least 'source' and 'target' keys (e.g., [{"source": "A", "target": "B"}, ...]) and any other columns you want to include in the edge table - nodes (list, optional): List of nodes, each as a dict with at least 'id' key (e.g., [{"id": "A"}, ...]) and any other columns you want to include in the node table - node_id (str, optional): Column name for node IDs, if nodes are provided, must be provided. - source (str, optional): Column name for edge source (default: "source") - destination (str, optional): Column name for edge destination (default: "target") - columns (list, optional): List of column names for hypergraph edge table, use if graph_type is hypergraph. - title (str, optional): Title for the visualization - description (str, optional): Description for the visualization ctx: MCP context for progress reporting Example (graph): graph_data = { "graph_type": "graph", "edges": [ {"source": "A", "target": "B", "weight": 1}, {"source": "A", "target": "C", "weight": 2}, ... ], "nodes": [ {"id": "A", "label": "Node A"}, {"id": "B", "label": "Node B"}, ... ], "node_id": "id", "source": "source", "destination": "target", "title": "My Graph", "description": "A simple example graph." } Example (hypergraph): graph_data = { "graph_type": "hypergraph", "edges": [ {"source": "A", "target": "B", "group": "G1", "weight": 1}, {"source": "A", "target": "C", "group": "G1", "weight": 1}, ... ], "columns": ["source", "target", "group"], "title": "My Hypergraph", "description": "A simple example hypergraph." }

Input Schema

NameRequiredDescriptionDefault
ctxNo
graph_dataYes

Input Schema (JSON Schema)

{ "$defs": { "Context": { "description": "Context object providing access to MCP capabilities.\n\nThis provides a cleaner interface to MCP's RequestContext functionality.\nIt gets injected into tool and resource functions that request it via type hints.\n\nTo use context in a tool function, add a parameter with the Context type annotation:\n\n```python\n@server.tool()\ndef my_tool(x: int, ctx: Context) -> str:\n # Log messages to the client\n ctx.info(f\"Processing {x}\")\n ctx.debug(\"Debug info\")\n ctx.warning(\"Warning message\")\n ctx.error(\"Error message\")\n\n # Report progress\n ctx.report_progress(50, 100)\n\n # Access resources\n data = ctx.read_resource(\"resource://data\")\n\n # Get request info\n request_id = ctx.request_id\n client_id = ctx.client_id\n\n return str(x)\n```\n\nThe context parameter name can be anything as long as it's annotated with Context.\nThe context is optional - tools that don't need it can omit the parameter.", "properties": {}, "title": "Context", "type": "object" } }, "properties": { "ctx": { "anyOf": [ { "$ref": "#/$defs/Context" }, { "type": "null" } ], "default": null }, "graph_data": { "additionalProperties": true, "title": "Graph Data", "type": "object" } }, "required": [ "graph_data" ], "title": "visualize_graphArguments", "type": "object" }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/graphistry/graphistry-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server