Skip to main content
Glama

Graphistry MCP

Official
by graphistry

detect_patterns

Analyze graph data to uncover patterns, detect anomalies, and identify communities using centrality measures and path analysis. Returns a comprehensive report with results and potential errors.

Instructions

Identify patterns, communities, and anomalies within graphs. Runs all supported analyses and returns a combined report. Args: graph_id: ID of the graph to analyze ctx: MCP context for progress reporting Returns: Dictionary with results from all analyses that succeeded. Keys may include: - degree_centrality - betweenness_centrality - closeness_centrality - communities (if community detection is available) - shortest_path (if path finding is possible) - path_length - anomalies (if anomaly detection is available) - errors (dict of analysis_type -> error message)

Input Schema

NameRequiredDescriptionDefault
ctxNo
graph_idYes

Input Schema (JSON Schema)

{ "$defs": { "Context": { "description": "Context object providing access to MCP capabilities.\n\nThis provides a cleaner interface to MCP's RequestContext functionality.\nIt gets injected into tool and resource functions that request it via type hints.\n\nTo use context in a tool function, add a parameter with the Context type annotation:\n\n```python\n@server.tool()\ndef my_tool(x: int, ctx: Context) -> str:\n # Log messages to the client\n ctx.info(f\"Processing {x}\")\n ctx.debug(\"Debug info\")\n ctx.warning(\"Warning message\")\n ctx.error(\"Error message\")\n\n # Report progress\n ctx.report_progress(50, 100)\n\n # Access resources\n data = ctx.read_resource(\"resource://data\")\n\n # Get request info\n request_id = ctx.request_id\n client_id = ctx.client_id\n\n return str(x)\n```\n\nThe context parameter name can be anything as long as it's annotated with Context.\nThe context is optional - tools that don't need it can omit the parameter.", "properties": {}, "title": "Context", "type": "object" } }, "properties": { "ctx": { "anyOf": [ { "$ref": "#/$defs/Context" }, { "type": "null" } ], "default": null }, "graph_id": { "title": "Graph Id", "type": "string" } }, "required": [ "graph_id" ], "title": "detect_patternsArguments", "type": "object" }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/graphistry/graphistry-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server