Skip to main content
Glama

apply_tree_layout

Organize graph data into a layered hierarchical structure using the tree_layout API, providing a clear visualization of relationships and connections for analysis.

Instructions

Apply a tree (layered hierarchical) layout to the graph using Graphistry's tree_layout API. Args: graph_id (str): The ID of the graph to modify. Returns: dict: { 'graph_id': ..., 'url': ... } with the updated visualization URL. Example: apply_tree_layout(graph_id)

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
graph_idYes

Implementation Reference

  • The handler function decorated with @mcp.tool(), which registers and implements the 'apply_tree_layout' tool. It retrieves the graph from cache, applies tree_layout using Graphistry API, updates the cache, and returns the updated graph ID and visualization URL.
    @mcp.tool() async def apply_tree_layout(graph_id: str) -> Dict[str, Any]: """ Apply a tree (layered hierarchical) layout to the graph using Graphistry's tree_layout API. Args: graph_id (str): The ID of the graph to modify. Returns: dict: { 'graph_id': ..., 'url': ... } with the updated visualization URL. Example: apply_tree_layout(graph_id) """ if graph_id not in graph_cache: raise ValueError(f"Graph not found: {graph_id}") g = graph_cache[graph_id]["graph"] g = g.tree_layout() graph_cache[graph_id]["graph"] = g return {"graph_id": graph_id, "url": g.plot(render=False)}
  • The @mcp.tool() decorator registers the apply_tree_layout function as an MCP tool.
    @mcp.tool()

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/graphistry/graphistry-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server