Skip to main content
Glama

Firefly

Official
by gofireflyio
README.md3.07 kB
[![Firefly](https://infralight-templates-public.s3.amazonaws.com/company-logos/firefly_logo_white.png)](https://firefly.ai) # Firefly MCP Server The Firefly MCP (Model Context Protocol) server is a TypeScript-based server that enables seamless integration with the Firefly platform. It allows you to discover, manage, and codify resources across your Cloud and SaaS accounts connected to Firefly. ## Features - 🔍 Resource Discovery: Find any resource in your Cloud and SaaS accounts - 📝 Resource Codification: Convert discovered resources into Infrastructure as Code - 🔐 Secure Authentication: Uses FIREFLY_ACCESS_KEY and FIREFLY_SECRET_KEY for secure communication - 🚀 Easy Integration: Works seamlessly with Claude and Cursor ## Prerequisites - Node.js (v14 or higher) - npm or yarn - Firefly account with generated access keys ## Installation You can run the Firefly MCP server directly using NPX: ```bash npx @fireflyai/firefly-mcp ``` ### Environment Variables You can provide your Firefly credentials in two ways: 1. Using environment variables: ```bash FIREFLY_ACCESS_KEY=your_access_key FIREFLY_SECRET_KEY=your_secret_key npx @fireflyai/firefly-mcp ``` 2. Using arguments: ```bash npx @fireflyai/firefly-mcp --access-key your_access_key --secret-key your_secret_key ``` ## Usage ### Stdio Update the `mcp.json` file with the following: ```bash { "mcpServers": { "firefly": { "command": "npx", "args": ["-y", "@fireflyai/firefly-mcp"], "env": { "FIREFLY_ACCESS_KEY": "your_access_key", "FIREFLY_SECRET_KEY": "your_secret_key" } } } } ``` Run the MCP server using one of the methods above with the following command: ```bash npx @fireflyai/firefly-mcp --sse --port 6001 ``` Update the `mcp.json` file with the following: ```bash { "mcpServers": { "firefly": { "url": "http://localhost:6001/sse" } } } ``` ### Using with Cursor 1. Start the MCP server using one of the methods above 2. Use the Cursor extension to connect to the MCP server - see [Cursor Model Context Protocol documentation](https://docs.cursor.com/context/model-context-protocol) 3. Use natural language to query your resources #### Example: ##### Prompt ``` Find all "ubuntu-prod" EC2 instance in 123456789012 AWS account and codify it into Terraform ``` ##### Response ``` resource "aws_instance" "ubuntu-prod" { ami = "ami-0c55b159cbfafe1f0" instance_type = "t3.micro" } ``` ## Demo https://github.com/user-attachments/assets/0986dff5-d433-4d82-9564-876b8215b61e ## Contributing 1. Fork the repository 2. Create your feature branch (`git checkout -b feature/amazing-feature`) 3. Commit your changes (`git commit -m 'feat: Add amazing feature'`) 4. Push to the branch (`git push origin feature/amazing-feature`) 5. Open a Pull Request ## License This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details. ## Support For support, please visit [Firefly's documentation](https://docs.firefly.ai) or create an issue in this repository.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/gofireflyio/firefly-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server