Skip to main content
Glama

mcp-server-conceal

MIT License
1
  • Linux
  • Apple

MCP Conceal

An MCP proxy that pseudo-anonymizes PII before data reaches external AI providers like Claude, ChatGPT, or Gemini.

MCP Conceal performs pseudo-anonymization rather than redaction to preserve semantic meaning and data relationships required for AI analysis. Example: john.smith@acme.com becomes mike.wilson@techcorp.com, maintaining structure while protecting sensitive information.

Installation

Download Pre-built Binary

  1. Visit the Releases page
  2. Download the binary for your platform:
PlatformBinary
Linux x64mcp-server-conceal-linux-amd64
macOS Intelmcp-server-conceal-macos-amd64
macOS Apple Siliconmcp-server-conceal-macos-aarch64
Windows x64mcp-server-conceal-windows-amd64.exe
  1. Make executable: chmod +x mcp-server-conceal-* (Linux/macOS)
  2. Add to PATH:
    • Linux/macOS: mv mcp-server-conceal-* /usr/local/bin/mcp-server-conceal
    • Windows: Move to a directory in your PATH or add current directory to PATH

Building from Source

git clone https://github.com/gbrigandi/mcp-server-conceal cd mcp-server-conceal cargo build --release

Binary location: target/release/mcp-server-conceal

Quick Start

Prerequisites

Install Ollama for LLM-based PII detection:

  1. Install Ollama: ollama.ai
  2. Pull model: ollama pull llama3.2:3b
  3. Verify: curl http://localhost:11434/api/version

Basic Usage

Create a minimal mcp-server-conceal.toml:

[detection] mode = "regex_llm" [llm] model = "llama3.2:3b" endpoint = "http://localhost:11434"

See the Configuration section for all available options.

Run as proxy:

mcp-server-conceal \ --target-command python3 \ --target-args "my-mcp-server.py" \ --config mcp-server-conceal.toml

Configuration

Complete configuration reference:

[detection] mode = "regex_llm" # Detection strategy: regex, llm, regex_llm enabled = true confidence_threshold = 0.8 # Detection confidence threshold (0.0-1.0) [detection.patterns] email = "\\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\\.[A-Z|a-z]{2,}\\b" phone = "\\b(?:\\+?1[-\\.\\s]?)?(?:\\(?[0-9]{3}\\)?[-\\.\\s]?)?[0-9]{3}[-\\.\\s]?[0-9]{4}\\b" ssn = "\\b\\d{3}-\\d{2}-\\d{4}\\b" credit_card = "\\b\\d{4}[-\\s]?\\d{4}[-\\s]?\\d{4}[-\\s]?\\d{4}\\b" ip_address = "\\b(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\\b" url = "https?://[^\\s/$.?#].[^\\s]*" [faker] locale = "en_US" # Locale for generating realistic fake PII data seed = 12345 # Seed ensures consistent anonymization across restarts consistency = true # Same real PII always maps to same fake data [mapping] database_path = "mappings.db" # SQLite database storing real-to-fake mappings retention_days = 90 # Delete old mappings after N days [llm] model = "llama3.2:3b" # Ollama model for PII detection endpoint = "http://localhost:11434" timeout_seconds = 180 prompt_template = "default" # Template for PII detection prompts [llm_cache] enabled = true # Cache LLM detection results for performance database_path = "llm_cache.db" max_text_length = 2000

Configuration Guidance

Detection Settings:

  • confidence_threshold: Lower values (0.6) catch more PII but increase false positives. Higher values (0.9) are more precise but may miss some PII.
  • mode: Choose based on your latency vs accuracy requirements (see Detection Modes below)

Faker Settings:

  • locale: Use "en_US" for American names/addresses, "en_GB" for British, etc. Affects realism of generated fake data
  • seed: Keep consistent across deployments to ensure same real data maps to same fake data
  • consistency: Always leave true to maintain data relationships

Mapping Settings:

  • retention_days: Balance between data consistency and storage. Shorter periods (30 days) reduce storage but may cause inconsistent anonymization for recurring data
  • database_path: Use absolute paths in production to avoid database location issues

Detection Modes

Choose the detection strategy based on your performance requirements and data complexity:

RegexLlm (Default)

Best for production environments - Combines speed and accuracy:

  • Phase 1: Fast regex catches common patterns (emails, phones, SSNs)
  • Phase 2: LLM analyzes remaining text for complex PII
  • Use when: You need comprehensive detection with reasonable performance
  • Performance: ~100-500ms per request depending on text size
  • Configure: mode = "regex_llm"

Regex Only

Best for high-volume, latency-sensitive applications:

  • Uses only pattern matching - no AI analysis
  • Use when: You have well-defined PII patterns and need <10ms response
  • Trade-off: May miss contextual PII like "my account number is ABC123"
  • Configure: mode = "regex"

LLM Only

Best for complex, unstructured data:

  • AI-powered detection catches nuanced PII patterns
  • Use when: Accuracy is more important than speed
  • Performance: ~200-1000ms per request
  • Configure: mode = "llm"

Advanced Usage

Claude Desktop Integration

Configure Claude Desktop to proxy MCP servers:

{ "mcpServers": { "database": { "command": "mcp-server-conceal", "args": [ "--target-command", "python3", "--target-args", "database-server.py --host localhost", "--config", "/path/to/mcp-server-conceal.toml" ], "env": { "DATABASE_URL": "postgresql://localhost/mydb" } } } }

Custom LLM Prompts

Customize detection prompts for specific domains:

Template locations:

  • Linux: ~/.local/share/mcp-server-conceal/prompts/
  • macOS: ~/Library/Application Support/com.mcp-server-conceal.mcp-server-conceal/prompts/
  • Windows: %LOCALAPPDATA%\\com\\mcp-server-conceal\\mcp-server-conceal\\data\\prompts\\

Usage:

  1. Run MCP Conceal once to auto-generate default.md in the prompts directory:
    mcp-server-conceal --target-command echo --target-args "test" --config mcp-server-conceal.toml
  2. Copy: cp default.md healthcare.md
  3. Edit template for domain-specific PII patterns
  4. Configure: prompt_template = "healthcare"

Environment Variables

Pass environment variables to target process:

mcp-server-conceal \ --target-command node \ --target-args "server.js" \ --target-cwd "/path/to/server" \ --target-env "DATABASE_URL=postgresql://localhost/mydb" \ --target-env "API_KEY=secret123" \ --config mcp-server-conceal.toml

Troubleshooting

Enable debug logging:

RUST_LOG=debug mcp-server-conceal \ --target-command python3 \ --target-args server.py \ --config mcp-server-conceal.toml

Common Issues:

  • Invalid regex patterns in configuration
  • Ollama connectivity problems
  • Database file permissions
  • Missing prompt templates

Security

Mapping Database: Contains sensitive real-to-fake mappings. Secure with appropriate file permissions.

LLM Integration: Run Ollama on trusted infrastructure when using LLM-based detection modes.

Contributing

Contributions are welcome! Follow these steps to get started:

Development Setup

Prerequisites:

  • Install Rust: https://rustup.rs/
  • Minimum supported Rust version: 1.70+
  1. Clone and setup:
    git clone https://github.com/gbrigandi/mcp-server-conceal cd mcp-server-conceal
  2. Build in development mode:
    cargo build cargo test
  3. Install development tools:
    rustup component add clippy rustfmt
  4. Run with debug logging:
    RUST_LOG=debug cargo run -- --target-command cat --target-args test.txt --config mcp-server-conceal.toml

Testing

  • Unit tests: cargo test
  • Integration tests: cargo test --test integration_test
  • Linting: cargo clippy
  • Formatting: cargo fmt

Submitting Changes

  1. Fork the repository
  2. Create a feature branch: git checkout -b feature-name
  3. Make your changes and add tests
  4. Ensure all tests pass: cargo test
  5. Format code: cargo fmt
  6. Submit a pull request with a clear description

License

MIT License - see LICENSE file for details.

-
security - not tested
A
license - permissive license
-
quality - not tested

hybrid server

The server is able to function both locally and remotely, depending on the configuration or use case.

An MCP proxy that pseudo-anonymizes PII before data reaches external AI providers like Claude, ChatGPT, or Gemini.

  1. Installation
    1. Download Pre-built Binary
    2. Building from Source
  2. Quick Start
    1. Prerequisites
    2. Basic Usage
  3. Configuration
    1. Configuration Guidance
  4. Detection Modes
    1. RegexLlm (Default)
    2. Regex Only
    3. LLM Only
  5. Advanced Usage
    1. Claude Desktop Integration
    2. Custom LLM Prompts
    3. Environment Variables
  6. Troubleshooting
    1. Security
      1. Contributing
        1. Development Setup
        2. Testing
        3. Submitting Changes
      2. License

        Related MCP Servers

        • -
          security
          A
          license
          -
          quality
          Model Context Protocol (MCP) server implementation that enables Claude Desktop to interact with Google's Gemini AI models.
          Last updated -
          191
          JavaScript
          MIT License
          • Apple
          • Linux
        • -
          security
          A
          license
          -
          quality
          An MCP server that enables Claude to interact with Port.io's AI agent, allowing users to trigger the agent with prompts and receive structured responses including status, output, and action items.
          Last updated -
          12
          Python
          MIT License
          • Linux
          • Apple
        • -
          security
          A
          license
          -
          quality
          A proxy server that bridges AI agents and external APIs by dynamically translating OpenAPI specifications into standardized MCP tools, enabling seamless interaction without custom integration code.
          Last updated -
          53
          Python
          MIT License
          • Linux
          • Apple
        • -
          security
          -
          license
          -
          quality
          An MCP server implementation that allows using Google's Gemini AI models (specifically Gemini 1.5 Pro) through Claude or other MCP clients via the Model Context Protocol.
          Last updated -
          1
          JavaScript

        View all related MCP servers

        MCP directory API

        We provide all the information about MCP servers via our MCP API.

        curl -X GET 'https://glama.ai/api/mcp/v1/servers/gbrigandi/mcp-server-conceal'

        If you have feedback or need assistance with the MCP directory API, please join our Discord server