Skip to main content
Glama

OpenAPI to Model Context Protocol (MCP)

OpenAPI to Model Context Protocol (MCP)

License: MIT Repo Size Last Commit Open Issues Python version

The OpenAPI-MCP proxy translates OpenAPI specs into MCP tools, enabling AI agents to access external APIs without custom wrappers!

OpenAPI-MCP

Bridge the gap between AI agents and external APIs

The OpenAPI to Model Context Protocol (MCP) proxy server bridges the gap between AI agents and external APIs by dynamically translating OpenAPI specifications into standardized MCP tools, resources, and prompts. This simplifies integration by eliminating the need for custom API wrappers.


If you find it useful, please give it a ⭐ on GitHub!


Related MCP server: MCP Command Proxy

Key Features

  • FastMCP Transport: Optimized for stdio, working out-of-the-box with popular LLM orchestrators.

  • OpenAPI Integration: Parses and registers OpenAPI operations as callable tools.

  • Resource Registration: Automatically converts OpenAPI component schemas into resource objects with defined URIs.

  • Prompt Generation: Generates contextual prompts based on API operations to guide LLMs in using the API.

  • OAuth2 Support: Handles machine authentication via Client Credentials flow.

  • JSON-RPC 2.0 Support: Fully compliant request/response structure.

  • Auto Metadata: Derives tool names, summaries, and schemas from the OpenAPI specification.

  • Sanitized Tool Names: Ensures compatibility with MCP name constraints.

  • Flexible Parameter Parsing: Supports query strings (with a leading "?") and multiple JSON variations (including keys with dots and numeric values).

  • Enhanced Parameter Handling: Automatically converts parameters to the correct data types.

  • Extended Tool Metadata: Includes detailed parameter information and response schemas.

Quick Start

Installation

git clone https://github.com/gujord/OpenAPI-MCP.git cd OpenAPI-MCP pip install -r requirements.txt

LLM Orchestrator Configuration

For Claude Desktop, Cursor, and Windsurf, use the snippet below and adapt the paths accordingly:

{ "mcpServers": { "petstore3": { "command": "full_path_to_openapi_mcp/venv/bin/python", "args": ["full_path_to_openapi_mcp/src/server.py"], "env": { "SERVER_NAME": "petstore3", "OPENAPI_URL": "https://petstore3.swagger.io/api/v3/openapi.json" }, "transport": "stdio" } } }

Apply this configuration to the following files:

  • Cursor: ~/.cursor/mcp.json

  • Windsurf: ~/.codeium/windsurf/mcp_config.json

  • Claude Desktop: ~/Library/Application Support/Claude/claude_desktop_config.json

Replace full_path_to_openapi_mcp with your actual installation path.

Environment Configuration

Variable

Description

Required

Default

OPENAPI_URL

URL to the OpenAPI specification

Yes

-

SERVER_NAME

MCP server name

No

openapi_proxy_server

OAUTH_CLIENT_ID

OAuth client ID

No

-

OAUTH_CLIENT_SECRET

OAuth client secret

No

-

OAUTH_TOKEN_URL

OAuth token endpoint URL

No

-

OAUTH_SCOPE

OAuth scope

No

api

How It Works

  1. Parses OpenAPI Spec: Loads the OpenAPI specification using httpx and PyYAML if needed.

  2. Registers Operations: Extracts API operations and generates MCP-compatible tools with proper input and response schemas.

  3. Resource Registration: Automatically converts OpenAPI component schemas into resource objects with assigned URIs (e.g., /resource/{name}).

  4. Prompt Generation: Creates contextual prompts based on API operations to assist LLMs in understanding API usage.

  5. Authentication: Supports OAuth2 authentication via the Client Credentials flow.

  6. Parameter Handling: Converts parameters to required data types and supports flexible query string and JSON formats.

  7. JSON-RPC 2.0 Compliance: Ensures standard communication protocols for tool interactions.

sequenceDiagram participant LLM as LLM (Claude/GPT) participant MCP as OpenAPI-MCP Proxy participant API as External API Note over LLM, API: Communication Process LLM->>MCP: 1. Initialize (initialize) MCP-->>LLM: Metadata, tools, resources, and prompts LLM->>MCP: 2. Request tools (tools_list) MCP-->>LLM: Detailed list of tools, resources, and prompts LLM->>MCP: 3. Call tool (tools_call) alt With OAuth2 MCP->>API: Request OAuth2 token API-->>MCP: Access Token end MCP->>API: 4. Execute API call with proper formatting API-->>MCP: 5. API response (JSON) alt Type Conversion MCP->>MCP: 6. Convert parameters to correct data types end MCP-->>LLM: 7. Formatted response from API alt Dry Run Mode LLM->>MCP: Call with dry_run=true MCP-->>LLM: Display request information without executing call end

Resources & Prompts

In addition to tools, the proxy server now automatically registers:

  • Resources: Derived from OpenAPI component schemas, resource objects are registered with defined URIs (e.g., /resource/{name}) for structured data handling.

  • Prompts: Contextual prompts are generated based on API operations to provide usage guidance to LLMs, enhancing their understanding of available endpoints.

This extended metadata improves integration by providing comprehensive API context.

OpenAPI-MCP

Contributing

  • Fork this repository.

  • Create a new branch.

  • Submit a pull request with a clear description of your changes.

License

MIT License

If you find it useful, please give it a ⭐ on GitHub!

-
security - not tested
A
license - permissive license
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/gujord/OpenAPI-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server