Skip to main content
Glama
garylab
by garylab

google_search_images

Find and retrieve visual content from Google Images by specifying search queries, location filters, language preferences, and result parameters.

Instructions

Search Google for results

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
qYesThe query to search for
glNoThe country to search in, e.g. us, uk, ca, au, etc.
locationNoThe location to search in, e.g. San Francisco, CA, USA
hlNoThe language to search in, e.g. en, es, fr, de, etc.
pageNoThe page number to return, first page is 1 (integer value as string)1
tbsNoThe time period to search in, e.g. d, w, m, y
numNoThe number of results to return, max is 100 (integer value as string)10

Implementation Reference

  • Handler function that executes the tool logic for 'google_search_images' by deriving the endpoint 'images' from the tool name and sending a POST request to the Serper Google Images API.
    async def google(tool: SerperTools, request: BaseModel) -> Dict[str, Any]: uri_path = tool.value.split("_")[-1] url = f"https://google.serper.dev/{uri_path}" return await fetch_json(url, request)
  • Pydantic model defining the input schema for google_search_images tool, extending BaseRequest with additional fields tbs and num.
    class SearchRequest(BaseRequest): tbs: Optional[str] = Field( None, description="The time period to search in, e.g. d, w, m, y" ) num: str = Field( "10", pattern=r"^([1-9]|[1-9]\d|100)$", description="The number of results to return, max is 100 (integer value as string)", )
  • Registers the 'google_search_images' tool (among others) by generating Tool objects with name from SerperTools enum and inputSchema from the mapped Pydantic model.
    @server.list_tools() async def list_tools() -> List[Tool]: tools = [] for k, v in google_request_map.items(): tools.append( Tool( name=k.value, description="Search Google for results", inputSchema=v.model_json_schema(), ), ) tools.append(Tool( name=SerperTools.WEBPAGE_SCRAPE, description="Scrape webpage by url", inputSchema=WebpageRequest.model_json_schema(), )) return tools
  • Dictionary mapping SerperTools.GOOGLE_SEARCH_IMAGES to its input schema SearchRequest, used for validation and Tool registration.
    google_request_map = { SerperTools.GOOGLE_SEARCH: SearchRequest, SerperTools.GOOGLE_SEARCH_IMAGES: SearchRequest, SerperTools.GOOGLE_SEARCH_VIDEOS: SearchRequest, SerperTools.GOOGLE_SEARCH_PLACES: AutocorrectRequest, SerperTools.GOOGLE_SEARCH_MAPS: MapsRequest, SerperTools.GOOGLE_SEARCH_REVIEWS: ReviewsRequest, SerperTools.GOOGLE_SEARCH_NEWS: SearchRequest, SerperTools.GOOGLE_SEARCH_SHOPPING: ShoppingRequest, SerperTools.GOOGLE_SEARCH_LENS: LensRequest, SerperTools.GOOGLE_SEARCH_SCHOLAR: AutocorrectRequest, SerperTools.GOOGLE_SEARCH_PATENTS: PatentsRequest, SerperTools.GOOGLE_SEARCH_AUTOCOMPLETE: AutocorrectRequest, }
  • Utility function that performs the asynchronous HTTP POST to the Serper API endpoint, handling SSL, timeout, and JSON response.
    async def fetch_json(url: str, request: BaseModel) -> Dict[str, Any]: payload = request.model_dump(exclude_none=True) headers = { 'X-API-KEY': SERPER_API_KEY, 'Content-Type': 'application/json' } ssl_context = ssl.create_default_context(cafile=certifi.where()) connector = aiohttp.TCPConnector(ssl=ssl_context) timeout = aiohttp.ClientTimeout(total=AIOHTTP_TIMEOUT) async with aiohttp.ClientSession(connector=connector, timeout=timeout) as session: async with session.post(url, headers=headers, json=payload) as response: response.raise_for_status() return await response.json()

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/garylab/serper-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server