Skip to main content
Glama
garylab
by garylab

google_search_autocomplete

Perform Google searches through the Serper MCP Server to retrieve current web information for queries, with options for location, language, and autocorrection.

Instructions

Search Google for results

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
qYesThe query to search for
glNoThe country to search in, e.g. us, uk, ca, au, etc.
locationNoThe location to search in, e.g. San Francisco, CA, USA
hlNoThe language to search in, e.g. en, es, fr, de, etc.
pageNoThe page number to return, first page is 1 (integer value as string)1
autocorrectNoAutomatically correct (boolean value as string: 'true' or 'false')true

Implementation Reference

  • Core handler function for the google_search_autocomplete tool. Extracts 'autocomplete' from tool name, builds Serper API URL, and fetches the response using the provided request.
    async def google(tool: SerperTools, request: BaseModel) -> Dict[str, Any]: uri_path = tool.value.split("_")[-1] url = f"https://google.serper.dev/{uri_path}" return await fetch_json(url, request)
  • Pydantic model defining the input schema for the google_search_autocomplete tool, extending BaseRequest with an autocorrect option.
    class AutocorrectRequest(BaseRequest): autocorrect: Optional[str] = Field( "true", pattern=r"^(true|false)$", description="Automatically correct (boolean value as string: 'true' or 'false')", )
  • Registers the google_search_autocomplete tool (via google_request_map) by creating a Tool object with name, description, and inputSchema from AutocorrectRequest.
    @server.list_tools() async def list_tools() -> List[Tool]: tools = [] for k, v in google_request_map.items(): tools.append( Tool( name=k.value, description="Search Google for results", inputSchema=v.model_json_schema(), ), ) tools.append(Tool( name=SerperTools.WEBPAGE_SCRAPE, description="Scrape webpage by url", inputSchema=WebpageRequest.model_json_schema(), )) return tools
  • Maps the SerperTools.GOOGLE_SEARCH_AUTOCOMPLETE enum to AutocorrectRequest schema, used by list_tools() and call_tool() for this tool.
    google_request_map = { SerperTools.GOOGLE_SEARCH: SearchRequest, SerperTools.GOOGLE_SEARCH_IMAGES: SearchRequest, SerperTools.GOOGLE_SEARCH_VIDEOS: SearchRequest, SerperTools.GOOGLE_SEARCH_PLACES: AutocorrectRequest, SerperTools.GOOGLE_SEARCH_MAPS: MapsRequest, SerperTools.GOOGLE_SEARCH_REVIEWS: ReviewsRequest, SerperTools.GOOGLE_SEARCH_NEWS: SearchRequest, SerperTools.GOOGLE_SEARCH_SHOPPING: ShoppingRequest, SerperTools.GOOGLE_SEARCH_LENS: LensRequest, SerperTools.GOOGLE_SEARCH_SCHOLAR: AutocorrectRequest, SerperTools.GOOGLE_SEARCH_PATENTS: PatentsRequest, SerperTools.GOOGLE_SEARCH_AUTOCOMPLETE: AutocorrectRequest, }
  • Dispatch logic in the main MCP call_tool handler that invokes the google handler for google_search_autocomplete using the mapped schema and tool enum.
    if not SerperTools.has_value(name): raise ValueError(f"Tool {name} not found") tool = SerperTools(name) request = google_request_map[tool](**arguments) result = await google(tool, request) return [TextContent(text=json.dumps(result, indent=2), type="text")]

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/garylab/serper-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server