Skip to main content
Glama
meta.json1.42 kB
{"job_config":{"name":null,"steps":[{"type":"udf","name":null,"metadata":null,"ignore_chunk_error":false,"udf":{"name":"tree_height_stats_from_lat_lon","type":"geopandas_v2","headers":[],"metadata":{"fused:mcp":{"description":"\nPurpose: This UDF analyzes tree canopy heights around any geographic location using satellite-based LiDAR data.\nData Source: Global ALS/GLAS LiDAR dataset (CHM - Canopy Height Model) stored on S3\nMethod:\n- Creates a circular buffer (250m radius) around input coordinates\n- Queries the corresponding satellite tile for that location\n- Extracts height measurements from the canopy height model\nOutputs:\n- max_tree_height_m: Tallest tree in the area (42.0m at Vancouver location)\n- median_tree_height_m: Middle value of all height measurements (0.0m - indicates >50% ground pixels)\n- mean_tree_height_m: Average tree height (4.51m - includes ground pixels)\n- buffer_meters: Analysis radius (250m)\n- meta_chm_tile_id: Source satellite tile identifier","parameters":[{"name":"lat","type":"number","description":"Latitude of the location to analyze"},{"name":"lon","type":"number","description":"Longitude of the location to analyze"}]},"fused:slug":"tree_height_stats_from_lat_lon","fused:name":"tree_height_stats_from_lat_lon"},"entrypoint":"udf","cache_max_age":null,"parameters":{},"original_headers":"","source":"tree_height_stats_from_lat_lon.py"},"input":null}],"metadata":null}}

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/fusedio/fused-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server