README.md•4.6 kB
# RMCP Streamlit Cloud Demo
An interactive web interface demonstrating RMCP's econometric capabilities with Claude AI integration.
## 🌐 Live Demo
**🚀 Try it now:** [RMCP on Streamlit Cloud](https://your-app-url.streamlit.app)
## 🔧 Local Development
1. **Install Dependencies:**
```bash
pip install -r requirements.txt
```
2. **Run the App:**
```bash
streamlit run app.py
```
3. **Open in Browser:**
- Navigate to http://localhost:8501
## ☁️ Deploy to Streamlit Community Cloud
1. **Fork this repository**
2. **Connect to Streamlit Cloud:**
- Go to [share.streamlit.io](https://share.streamlit.io)
- Connect your GitHub account
- Select this repository
- Set main file path: `streamlit/app.py`
3. **Deploy!**
## 🔧 Setup
### Claude API Key
1. Get your API key from [Claude Console](https://console.anthropic.com/)
2. Enter it in the sidebar when the app starts
3. The key is stored only for your session (not saved)
### Data Upload
- Upload CSV files with your data
- The app will show a preview and data information
- All analyses work with your uploaded data
## 📊 Available Tools
### 📈 Descriptive Statistics
- **Summary Statistics**: Mean, median, mode, variance, etc.
- **Correlation Analysis**: Pearson and Spearman correlations
- **Outlier Detection**: Identify and analyze outliers
### 📊 Regression Analysis
- **Linear Regression**: Simple and multiple regression
- **Logistic Regression**: Binary outcome modeling
- **Panel Regression**: Fixed effects, random effects
### 🧪 Statistical Tests
- **T-Tests**: One-sample, two-sample, paired
- **Chi-Square Tests**: Independence testing
- **Normality Tests**: Shapiro-Wilk, Kolmogorov-Smirnov
- **Stationarity Tests**: Augmented Dickey-Fuller
### 📉 Time Series Analysis
- **ARIMA Models**: Autoregressive integrated moving average
- **VAR Models**: Vector autoregression
- **Forecasting**: Time series predictions
- **Cointegration Tests**: Long-run relationships
### 🔄 Data Transformations
- **Lag Variables**: Create lagged versions
- **Difference Variables**: First/second differences
- **Winsorization**: Outlier treatment
- **Standardization**: Z-score, min-max scaling
### 📊 Visualizations
- **Scatter Plots**: With trend lines and grouping
- **Time Series Plots**: Multiple variables over time
- **Histograms**: Distribution analysis
- **Correlation Heatmaps**: Visual correlation matrices
### 🎯 Advanced Econometrics
- **Instrumental Variables**: 2SLS estimation
- **Panel Fixed Effects**: Within-group estimation
- **Difference-in-Differences**: Causal inference
- **Regression Discontinuity**: Threshold effects
### 🤖 Machine Learning
- **Random Forest**: Ensemble modeling
- **Decision Trees**: Classification and regression
- **Clustering**: K-means, hierarchical
- **PCA Analysis**: Dimensionality reduction
## 🤖 Claude AI Assistant
The built-in Claude AI assistant can help you:
- Choose appropriate statistical methods
- Interpret analysis results
- Suggest next steps in your research
- Explain complex statistical concepts
Simply ask questions like:
- "What regression method should I use for this data?"
- "How do I interpret these coefficients?"
- "What does this p-value mean?"
## 📁 Example Data
The app works with any CSV file. Your data should have:
- Column headers in the first row
- Numeric variables for quantitative analysis
- Categorical variables for grouping/factors
- Time variables in standard formats (for time series)
## 🔒 Privacy & Security
- All analysis runs locally with your R installation
- Data is processed temporarily and not stored
- Claude API key is session-only (not saved)
- Uploaded files are automatically cleaned up
## 🛠️ Technical Details
- **Backend**: R statistical computing via subprocess
- **Frontend**: Streamlit web interface
- **AI Integration**: Anthropic Claude API
- **Data Processing**: Pandas DataFrames
- **Visualization**: R ggplot2 + Plotly integration
## 📞 Support
- Check the troubleshooting guide in `docs/troubleshooting.md`
- Report issues on GitHub
- Consult R documentation for statistical methods
## 🎯 Use Cases
Perfect for:
- **Academic Research**: Econometric analysis for papers
- **Business Analytics**: Market research and forecasting
- **Policy Analysis**: Causal inference and impact evaluation
- **Financial Modeling**: Risk analysis and portfolio optimization
- **Data Science**: Exploratory analysis and feature engineering
---
*Powered by RMCP (R Model Context Protocol) - Making advanced econometrics accessible to everyone.*