image_display_example.md•5.46 kB
# RMCP Visual Analytics Example
**New in v0.3.7**: This example demonstrates how RMCP now displays professional-quality plots and visualizations directly in Claude conversations, revolutionizing data analysis workflows.
## 🎯 Revolutionary Visual Analytics
### Direct Image Display in Claude
RMCP visualization tools now return both comprehensive statistical analysis **and** publication-quality images directly in Claude:
```markdown
# When you ask Claude:
"Create a correlation heatmap of my sales, marketing, and customer satisfaction data"
# RMCP responds with:
# 1. 📊 Interactive heatmap displayed inline with color-coded correlation strengths
# 2. 📋 Statistical analysis: correlation matrix with exact values and significance tests
# 3. 💡 Insights: "Strong positive correlation (r=0.89) between marketing and sales"
# 4. 🎨 Professional ggplot2 styling ready for presentations
```
### 🎨 Enhanced Visualization Tools (All 6 Support Inline Display)
**🔥 correlation_heatmap**: Color-coded correlation matrices with statistical significance testing
- Perfect for: Exploring relationships between multiple variables
- Visual: Color intensity shows correlation strength (-1 to +1)
- Analysis: p-values, confidence intervals, sample sizes
**📈 scatter_plot**: Interactive scatter plots with trend lines and grouping
- Perfect for: Regression analysis, outlier detection, group comparisons
- Visual: Points, trend lines, confidence bands, group colors
- Analysis: Correlation coefficients, R², regression equations
**📊 histogram**: Distribution analysis with density overlays
- Perfect for: Understanding data distributions, checking normality
- Visual: Bars with density curves, group overlays
- Analysis: Mean, median, skewness, kurtosis statistics
**📦 boxplot**: Quartile analysis with outlier detection
- Perfect for: Comparing distributions, finding outliers
- Visual: Boxes, whiskers, outlier points, group comparisons
- Analysis: Quartiles, IQR, outlier counts, group statistics
**⏱️ time_series_plot**: Temporal analysis with trend forecasting
- Perfect for: Time series analysis, trend identification
- Visual: Lines, points, smooth trends, confidence bands
- Analysis: Trend statistics, seasonal patterns, forecasts
**🔍 regression_plot**: Comprehensive diagnostic plots (4-panel)
- Perfect for: Model validation, assumption checking
- Visual: Residuals vs fitted, Q-Q plots, scale-location, leverage
- Analysis: Model diagnostics, outliers, influential points
### Usage Examples
#### 1. Correlation Heatmap (no file needed)
```json
{
"tool": "correlation_heatmap",
"arguments": {
"data": {
"sales": [100, 150, 200, 250, 300],
"marketing": [10, 15, 25, 30, 40],
"temperature": [20, 25, 30, 35, 40]
},
"method": "pearson",
"title": "Sales Correlation Analysis"
}
}
```
**Returns:**
- **Text**: Correlation matrix with values, statistics
- **Image**: Color-coded heatmap displayed directly in Claude
#### 2. Scatter Plot with Grouping
```json
{
"tool": "scatter_plot",
"arguments": {
"data": {
"x": [1, 2, 3, 4, 5, 6, 7, 8],
"y": [2, 4, 3, 6, 5, 8, 7, 10],
"group": ["A", "A", "B", "B", "A", "A", "B", "B"]
},
"x": "x",
"y": "y",
"group": "group",
"title": "Sales vs Marketing by Region"
}
}
```
**Returns:**
- **Text**: Correlation coefficient, data points count
- **Image**: Scatter plot with color-coded groups and trend lines
### Optional File Saving
You can still save plots to files if needed:
```json
{
"tool": "correlation_heatmap",
"arguments": {
"data": {...},
"file_path": "/path/to/save/heatmap.png",
"return_image": true
}
}
```
This saves the plot to a file **and** displays it inline in Claude.
### Technical Details
#### Image Format
- **Format**: PNG images with white background
- **Encoding**: Base64 for transmission
- **Resolution**: Configurable (default 800x600 pixels)
- **Quality**: 100 DPI for crisp display
#### MCP Content Response
Tools now return multiple content types:
```json
{
"content": [
{
"type": "text",
"text": "{\"correlation_matrix\": [[1.0, 0.95], [0.95, 1.0]], ...}"
},
{
"type": "image",
"data": "iVBORw0KGgoAAAANSUhEUgAAA...",
"mimeType": "image/png"
}
]
}
```
#### Configuration Options
All visualization tools support these parameters:
```json
{
"return_image": true, // Enable/disable inline images (default: true)
"file_path": "plot.png", // Optional: also save to file
"width": 800, // Image width in pixels
"height": 600 // Image height in pixels
}
```
### Benefits
1. **Immediate Visual Feedback**: See plots instantly without file management
2. **Streamlined Workflow**: Analysis and visualization in one conversation
3. **Better Context**: Images appear alongside statistical results
4. **No File Management**: No need to handle file paths or external viewers
5. **Responsive**: Works in any environment where Claude runs
### Backward Compatibility
- **Existing scripts**: All existing RMCP scripts continue to work unchanged
- **File paths**: Still supported for users who want to save plots
- **API**: No breaking changes to tool interfaces
This enhancement makes RMCP visualizations much more accessible and user-friendly, providing immediate visual feedback for statistical analyses directly within your Claude conversation.