Skip to main content
Glama
finite-sample

R Econometrics MCP Server

image_display_example.md5.45 kB
# RMCP Visual Analytics Example **New in v0.3.7**: This example demonstrates how RMCP now displays professional-quality plots and visualizations directly in Claude conversations, revolutionizing data analysis workflows. ## 🎯 Revolutionary Visual Analytics ### Direct Image Display in Claude RMCP visualization tools now return both comprehensive statistical analysis **and** publication-quality images directly in Claude: ```markdown # When you ask Claude: "Create a correlation heatmap of my sales, marketing, and customer satisfaction data" # RMCP responds with: # 1. 📊 Interactive heatmap displayed inline with color-coded correlation strengths # 2. 📋 Statistical analysis: correlation matrix with exact values and significance tests # 3. 💡 Insights: "Strong positive correlation (r=0.89) between marketing and sales" # 4. 🎨 Professional ggplot2 styling ready for presentations ``` ### 🎨 Enhanced Visualization Tools (All 6 Support Inline Display) **🔥 correlation_heatmap**: Color-coded correlation matrices with statistical significance testing - Perfect for: Exploring relationships between multiple variables - Visual: Color intensity shows correlation strength (-1 to +1) - Analysis: p-values, confidence intervals, sample sizes **📈 scatter_plot**: Interactive scatter plots with trend lines and grouping - Perfect for: Regression analysis, outlier detection, group comparisons - Visual: Points, trend lines, confidence bands, group colors - Analysis: Correlation coefficients, R², regression equations **📊 histogram**: Distribution analysis with density overlays - Perfect for: Understanding data distributions, checking normality - Visual: Bars with density curves, group overlays - Analysis: Mean, median, skewness, kurtosis statistics **📦 boxplot**: Quartile analysis with outlier detection - Perfect for: Comparing distributions, finding outliers - Visual: Boxes, whiskers, outlier points, group comparisons - Analysis: Quartiles, IQR, outlier counts, group statistics **⏱️ time_series_plot**: Temporal analysis with trend forecasting - Perfect for: Time series analysis, trend identification - Visual: Lines, points, smooth trends, confidence bands - Analysis: Trend statistics, seasonal patterns, forecasts **🔍 regression_plot**: Comprehensive diagnostic plots (4-panel) - Perfect for: Model validation, assumption checking - Visual: Residuals vs fitted, Q-Q plots, scale-location, leverage - Analysis: Model diagnostics, outliers, influential points ### Usage Examples #### 1. Correlation Heatmap (no file needed) ```json { "tool": "correlation_heatmap", "arguments": { "data": { "sales": [100, 150, 200, 250, 300], "marketing": [10, 15, 25, 30, 40], "temperature": [20, 25, 30, 35, 40] }, "method": "pearson", "title": "Sales Correlation Analysis" } } ``` **Returns:** - **Text**: Correlation matrix with values, statistics - **Image**: Color-coded heatmap displayed directly in Claude #### 2. Scatter Plot with Grouping ```json { "tool": "scatter_plot", "arguments": { "data": { "x": [1, 2, 3, 4, 5, 6, 7, 8], "y": [2, 4, 3, 6, 5, 8, 7, 10], "group": ["A", "A", "B", "B", "A", "A", "B", "B"] }, "x": "x", "y": "y", "group": "group", "title": "Sales vs Marketing by Region" } } ``` **Returns:** - **Text**: Correlation coefficient, data points count - **Image**: Scatter plot with color-coded groups and trend lines ### Optional File Saving You can still save plots to files if needed: ```json { "tool": "correlation_heatmap", "arguments": { "data": {...}, "file_path": "/path/to/save/heatmap.png", "return_image": true } } ``` This saves the plot to a file **and** displays it inline in Claude. ### Technical Details #### Image Format - **Format**: PNG images with white background - **Encoding**: Base64 for transmission - **Resolution**: Configurable (default 800x600 pixels) - **Quality**: 100 DPI for crisp display #### MCP Content Response Tools now return multiple content types: ```json { "content": [ { "type": "text", "text": "{\"correlation_matrix\": [[1.0, 0.95], [0.95, 1.0]], ...}" }, { "type": "image", "data": "iVBORw0KGgoAAAANSUhEUgAAA...", "mimeType": "image/png" } ] } ``` #### Configuration Options All visualization tools support these parameters: ```json { "return_image": true, // Enable/disable inline images (default: true) "file_path": "plot.png", // Optional: also save to file "width": 800, // Image width in pixels "height": 600 // Image height in pixels } ``` ### Benefits 1. **Immediate Visual Feedback**: See plots instantly without file management 2. **Streamlined Workflow**: Analysis and visualization in one conversation 3. **Better Context**: Images appear alongside statistical results 4. **No File Management**: No need to handle file paths or external viewers 5. **Responsive**: Works in any environment where Claude runs ### Backward Compatibility - **Existing scripts**: All existing RMCP scripts continue to work unchanged - **File paths**: Still supported for users who want to save plots - **API**: No breaking changes to tool interfaces This enhancement makes RMCP visualizations much more accessible and user-friendly, providing immediate visual feedback for statistical analyses directly within your Claude conversation.

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/finite-sample/rmcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server