Skip to main content
Glama

Steam Review MCP

Steam 评论 MCP

英语|中文

使用模型上下文协议 (MCP) 访问 Steam 游戏评论。

特征

帮助法学硕士检索 Steam 游戏评论和信息:

  • 获取游戏评论(好评/差评数、评论分数、评论内容等)
  • 获取游戏基本信息(名称、详细描述)
  • 分析游戏评论并总结优缺点

安装

通过 Smithery 安装

要通过Smithery自动安装 Claude Desktop 的 Steam Review:

npx -y @smithery/cli install @fenxer/steam-review-mcp --client claude

直接用 npx 运行:

npx steam-review-mcp

或添加:

{ "mcpServers": { "steam-review-mcp": { "command": "npx", "args": [ "steam-review-mcp" ] } } }

用法

工具

此 MCP 服务提供get_steam_review工具,通过传递 Steam 游戏 appid 来检索评论和游戏信息。

欲了解更多详情,请查看 Steamwork API:用户评论 - 获取列表

返回的数据包含两部分:

  1. game_reviews
    • success :查询是否成功
    • review_score :评分
    • review_score_desc :评分描述
    • total_positive :总好评数
    • total_negative :负面评论总数
    • reviews :所有评论文本内容(不含其他元数据)
  2. game_info
    • name :游戏名称
    • detailed_description :详细的游戏描述

提示

总结评论

对游戏进行整体评价分析,总结游戏的优点和缺点。

参数
  • appid (必填):Steam 游戏 ID,例如570 (Dota 2)
最近的评论分析

用于分析近期的游戏评论,总结游戏的现状和玩家的反馈。

参数
  • appid (必填):Steam 游戏 ID,例如570 (Dota 2)

发展

# Install dependencies npm install # Build project npm run build # Run service npm start
Install Server
A
security – no known vulnerabilities
A
license - permissive license
A
quality - confirmed to work

remote-capable server

The server can be hosted and run remotely because it primarily relies on remote services or has no dependency on the local environment.

使 LLM 能够检索和分析 Steam 游戏评论,提供评论统计数据、游戏信息,并帮助总结游戏的优缺点。

  1. 特征
    1. 安装
      1. 通过 Smithery 安装
    2. 用法
      1. 工具
      2. 提示
    3. 发展

      Related MCP Servers

      • A
        security
        A
        license
        A
        quality
        Enables interaction with MercadoLibre's API for product search, reviews, descriptions, and seller reputation insights.
        Last updated -
        4
        54
        6
        TypeScript
        MIT License
      • -
        security
        A
        license
        -
        quality
        Provide information about the games you played and how long you played them for to an LLM
        Last updated -
        MIT License
      • -
        security
        F
        license
        -
        quality
        Enables LLMs to perform statistical analysis and generate ML predictions on user data from databases or CSV files through a Model Context Protocol server.
        Last updated -
        Python
      • -
        security
        F
        license
        -
        quality
        Analyzes codebases using Repomix and LLMs to provide structured code reviews with specific issues and recommendations, supporting multiple LLM providers including OpenAI, Anthropic, and Gemini.
        Last updated -
        2
        JavaScript

      View all related MCP servers

      MCP directory API

      We provide all the information about MCP servers via our MCP API.

      curl -X GET 'https://glama.ai/api/mcp/v1/servers/fenxer/steam-review-mcp'

      If you have feedback or need assistance with the MCP directory API, please join our Discord server