Skip to main content
Glama

BCI-MCP Server

by enkhbold470
configuration.md2.1 kB
# Configuration This guide explains how to configure the BCI-MCP system for your specific needs. ## Configuration Files BCI-MCP uses several configuration files: - `config.yaml`: Main configuration file for the system - `.env`: Environment variables for Docker and sensitive settings - `mkdocs.yml`: Documentation site configuration ## Basic Configuration ### config.yaml The main configuration file supports the following settings: ```yaml # Basic settings application: name: "BCI-MCP" version: "1.0.0" log_level: "INFO" # DEBUG, INFO, WARNING, ERROR, CRITICAL # BCI device configuration bci: device_type: "openBCI" # openBCI, emotiv, neurosky, etc. sampling_rate: 250 # Hz channels: 8 # Number of EEG channels port: "/dev/ttyUSB0" # Serial port or device path # MCP settings mcp: api_endpoint: "https://api.example.com/mcp" api_key: "${MCP_API_KEY}" # Loaded from .env file model: "default" timeout: 30 # seconds ``` ### Environment Variables (.env) Create a `.env` file in the root directory with your sensitive configuration: ``` MCP_API_KEY=your_api_key_here DATABASE_URL=postgresql://user:password@localhost/bci_mcp ``` ## Advanced Configuration ### Signal Processing Configure signal processing in the `config.yaml` file: ```yaml signal_processing: filters: - type: "bandpass" low_cutoff: 1 # Hz high_cutoff: 50 # Hz - type: "notch" frequency: 60 # Hz features: - type: "power_spectral_density" enabled: true - type: "time_domain" enabled: true ``` ### Model Context Protocol (MCP) Configure MCP settings for advanced usage: ```yaml mcp_advanced: context_window: 5000 # tokens temperature: 0.7 max_tokens: 2000 stream_response: true ``` ## Configuration Validation To validate your configuration: ```bash python src/utils/validate_config.py ``` This will check your configuration files for errors and provide recommendations. ## Next Steps After configuring your BCI-MCP system, proceed to [BCI Features](../features/bci-features.md) to learn about the available features.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/enkhbold470/bci-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server