Integrations
Provides containerized deployment of the BCI-MCP system with all necessary services, making setup easier through docker-compose
Hosts the project repository for version control and collaboration
Automates the building and deployment of documentation to GitHub Pages when changes are pushed to the main branch
Brain-Computer Interface with Model Context Protocol (BCI-MCP)
This project integrates Brain-Computer Interface (BCI) technology with the Model Context Protocol (MCP) to create a powerful framework for neural signal acquisition, processing, and AI-enabled interactions.
Overview
BCI-MCP combines:
- Brain-Computer Interface (BCI): Real-time acquisition and processing of neural signals
- Model Context Protocol (MCP): Standardized AI communication interface
This integration enables advanced applications in healthcare, accessibility, research, and human-computer interaction.
Key Features
BCI Core Features
- Neural Signal Acquisition: Capture electrical signals from brain activity in real-time
- Signal Processing: Preprocess, extract features, and classify brain signals
- Command Generation: Convert interpreted brain signals into commands
- Feedback Mechanisms: Provide feedback to help users improve control
- Real-time Operation: Process brain activity with minimal delay
MCP Integration Features
- Standardized Context Sharing: Connect BCI data with AI models using MCP
- Tool Exposure: Make BCI functions available to AI applications
- Composable Workflows: Build complex operations combining BCI signals and AI processing
- Secure Data Exchange: Enable privacy-preserving neural data transmission
System Architecture
The BCI-MCP system consists of several key components:
Getting Started
Prerequisites
- Python 3.10+
- Compatible EEG hardware (or use simulated mode for testing)
- Additional dependencies listed in requirements.txt
Installation
Using Docker
For easier setup, you can use Docker:
Basic Usage
Advanced Applications
The BCI-MCP integration enables a range of cutting-edge applications:
Healthcare and Accessibility
- Assistive Technology: Enable individuals with mobility impairments to control devices
- Rehabilitation: Support neurological rehabilitation with real-time feedback
- Diagnostic Tools: Aid in diagnosing neurological conditions
Research and Development
- Neuroscience Research: Facilitate studies of brain function and cognition
- BCI Training: Accelerate learning and adaptation to BCI control
- Protocol Development: Establish standards for neural data exchange
AI-Enhanced Interfaces
- Adaptive Interfaces: Interfaces that adjust based on neural signals and AI assistance
- Intent Recognition: Better understanding of user intent through neural signals
- Augmentative Communication: Enhanced communication for individuals with speech disabilities
Documentation
The project documentation is hosted on GitHub Pages at: https://enkhbold470.github.io/bci-mcp/
Maintaining the Documentation
The documentation is built using MkDocs with the Material theme. To update the documentation:
- Make changes to the Markdown files in the
docs/
directory on themain
branch - Commit and push your changes to the
main
branch - The GitHub Actions workflow will automatically build and deploy the updated documentation to GitHub Pages
Local Documentation Development
To work with the documentation locally:
- Install the required dependencies:Copy
- Run the local server:Copy
- View the documentation at: http://localhost:8000
Project Structure
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature
) - Commit your changes (
git commit -m 'Add some amazing feature'
) - Push to the branch (
git push origin feature/amazing-feature
) - Open a Pull Request
License
This project is licensed under the MIT License - see the LICENSE file for details.
Acknowledgments
- Inspired by the OpenBCI project
- Built on the Model Context Protocol framework
- Thanks to the neuroscience and AI research communities
Contact
Enkhbold Ganbold - GitHub Profile
Project Link: https://github.com/enkhbold470/bci-mcp
This server cannot be installed
hybrid server
The server is able to function both locally and remotely, depending on the configuration or use case.
A framework that integrates Brain-Computer Interface technology with the Model Context Protocol to enable real-time neural signal processing and AI-powered interactions for healthcare, accessibility, and research applications.
Related MCP Servers
- -securityFlicense-qualityFacilitates interaction and context sharing between AI models using the standardized Model Context Protocol (MCP) with features like interoperability, scalability, security, and flexibility across diverse AI systems.Last updated -1Python
- -securityAlicense-qualityA Model Context Protocol server that provides health data from the Senechal API to LLM applications, enabling AI assistants to access, analyze, and respond to personal health information.Last updated -PythonGPL 3.0
- -securityAlicense-qualityA Model Context Protocol server that enables AI assistants like Claude to interact directly with Home Assistant, allowing them to query device states, control smart home entities, and perform automation tasks.Last updated -15PythonMIT License
- -securityAlicense-qualityA Model Context Protocol server that allows AI assistants to interact with the Neuro-Symbolic Autonomy Framework, enabling capabilities like running NSAF evolution with customizable parameters and comparing different agent architectures.Last updated -PythonMIT License