Skip to main content
Glama

MCP Memory Service

#\!/usr/bin/env python3 """ Simple test to use Homebrew Python's sentence-transformers """ import os import sys import subprocess # Set environment variables for testing os.environ["MCP_MEMORY_STORAGE_BACKEND"] = "sqlite_vec" os.environ["MCP_MEMORY_SQLITE_PATH"] = os.path.expanduser("~/Library/Application Support/mcp-memory/sqlite_vec.db") os.environ["MCP_MEMORY_BACKUPS_PATH"] = os.path.expanduser("~/Library/Application Support/mcp-memory/backups") os.environ["MCP_MEMORY_USE_ONNX"] = "1" # Get the Homebrew Python path result = subprocess.run( ['brew', '--prefix', 'pytorch'], capture_output=True, text=True, check=True ) pytorch_prefix = result.stdout.strip() homebrew_python_path = f"{pytorch_prefix}/libexec/bin/python3" print(f"Using Homebrew Python: {homebrew_python_path}") # Run a simple test with the Homebrew Python test_script = """ import torch import sentence_transformers import sys print(f"Python: {sys.version}") print(f"PyTorch: {torch.__version__}") print(f"sentence-transformers: {sentence_transformers.__version__}") # Load a model model = sentence_transformers.SentenceTransformer('paraphrase-MiniLM-L3-v2') print(f"Model loaded: {model}") # Encode a test sentence test_text = "This is a test sentence for encoding with Homebrew PyTorch" embedding = model.encode([test_text]) print(f"Embedding shape: {embedding.shape}") print("Test successful\!") """ # Run the test with Homebrew Python result = subprocess.run( [homebrew_python_path, "-c", test_script], capture_output=True, text=True ) print("=== STDOUT ===") print(result.stdout) if result.stderr: print("=== STDERR ===") print(result.stderr)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/doobidoo/mcp-memory-service'

If you have feedback or need assistance with the MCP directory API, please join our Discord server