Skip to main content
Glama

MCP Memory Service

glama-deployment.md3.5 kB
# Glama Deployment Guide This guide provides instructions for deploying the MCP Memory Service on the Glama platform. ## Overview The MCP Memory Service is now available on Glama at: https://glama.ai/mcp/servers/bzvl3lz34o Glama is a directory for MCP servers that provides easy discovery and deployment options for users. ## Docker Configuration for Glama ### Primary Dockerfile The repository includes an optimized Dockerfile specifically for Glama deployment: - `Dockerfile` - Main production Dockerfile - `Dockerfile.glama` - Glama-optimized version with enhanced labels and health checks ### Key Features 1. **Multi-platform Support**: Works on x86_64 and ARM64 architectures 2. **Health Checks**: Built-in health monitoring for container status 3. **Data Persistence**: Proper volume configuration for ChromaDB and backups 4. **Environment Configuration**: Pre-configured for optimal performance 5. **Security**: Minimal attack surface with slim Python base image ### Quick Start from Glama Users can deploy the service using: ```bash # Using the Glama-provided configuration docker run -d -p 8000:8000 \ -v $(pwd)/data/chroma_db:/app/chroma_db \ -v $(pwd)/data/backups:/app/backups \ doobidoo/mcp-memory-service:latest ``` ### Environment Variables The following environment variables are pre-configured: | Variable | Value | Purpose | |----------|-------|---------| | `MCP_MEMORY_CHROMA_PATH` | `/app/chroma_db` | ChromaDB storage location | | `MCP_MEMORY_BACKUPS_PATH` | `/app/backups` | Backup storage location | | `DOCKER_CONTAINER` | `1` | Indicates Docker environment | | `CHROMA_TELEMETRY_IMPL` | `none` | Disables ChromaDB telemetry | | `PYTORCH_ENABLE_MPS_FALLBACK` | `1` | Enables MPS fallback for Apple Silicon | ### Standalone Mode For deployment without an active MCP client, use: ```bash docker run -d -p 8000:8000 \ -e MCP_STANDALONE_MODE=1 \ -v $(pwd)/data/chroma_db:/app/chroma_db \ -v $(pwd)/data/backups:/app/backups \ doobidoo/mcp-memory-service:latest ``` ## Glama Platform Integration ### Server Verification The Dockerfile passes all Glama server checks: - ✅ Valid Dockerfile syntax - ✅ Proper base image - ✅ Security best practices - ✅ Health check implementation - ✅ Volume configuration - ✅ Port exposure ### User Experience Glama users benefit from: 1. **One-click deployment** from the Glama interface 2. **Pre-configured settings** for immediate use 3. **Documentation integration** with setup instructions 4. **Community feedback** and ratings 5. **Version tracking** and update notifications ### Monitoring and Health The Docker image includes health checks that verify: - Python environment is working - MCP Memory Service can be imported - Dependencies are properly loaded ## Maintenance ### Updates The Glama listing is automatically updated when: 1. New versions are tagged in the GitHub repository 2. Docker images are published to Docker Hub 3. Documentation is updated ### Support For Glama-specific issues: 1. Check the Glama platform documentation 2. Verify Docker configuration 3. Review container logs for errors 4. Test with standalone mode for debugging ## Contributing To improve the Glama integration: 1. Test the deployment on different platforms 2. Provide feedback on the installation experience 3. Suggest improvements to the Docker configuration 4. Report any platform-specific issues The goal is to make the MCP Memory Service as accessible as possible to the 60k+ monthly Glama users.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/doobidoo/mcp-memory-service'

If you have feedback or need assistance with the MCP directory API, please join our Discord server