enhancement-roadmap-issue-14.md•7.67 kB
# Memory Awareness Enhancement Roadmap - Issue #14
## Executive Summary
This roadmap outlines the transformation of GitHub issue #14 from a basic external utility to a sophisticated memory-aware Claude Code experience leveraging advanced features like hooks, project awareness, and MCP deep integration.
## Phase 1: Automatic Memory Awareness (Weeks 1-2)
### 1.1 Session Startup Hooks
**Goal**: Automatically inject relevant memories when starting a Claude Code session
**Implementation**:
```javascript
// claude-hooks/session-start.js
export async function onSessionStart(context) {
const projectContext = await detectProjectContext(context.workingDirectory);
const relevantMemories = await queryMemoryService({
tags: [projectContext.name, 'key-decisions', 'recent-insights'],
timeRange: 'last-2-weeks',
limit: 8
});
if (relevantMemories.length > 0) {
await injectSystemMessage(`
Recent project context from memory:
${formatMemoriesForContext(relevantMemories)}
`);
}
}
```
**Features**:
- Project detection based on git repository and directory structure
- Smart memory filtering by project relevance and recency
- Automatic context injection without user intervention
### 1.2 Project-Aware Memory Selection
**Goal**: Intelligently select memories based on current project context
**Implementation**:
```python
# Enhanced memory retrieval with project awareness
class ProjectAwareMemoryRetrieval:
def select_relevant_memories(self, project_context):
# Score memories by relevance to current project
memories = self.memory_service.search_by_tags([
project_context.name,
f"tech:{project_context.language}",
"decisions", "architecture", "bugs-fixed"
])
# Apply relevance scoring
scored_memories = self.score_by_relevance(memories, project_context)
return scored_memories[:10]
```
### 1.3 Conversation Context Injection
**Goal**: Seamlessly inject memory context into conversation flow
**Deliverables**:
- Session initialization hooks
- Project context detection algorithm
- Memory relevance scoring system
- Context formatting and injection utilities
## Phase 2: Intelligent Context Updates (Weeks 3-4)
### 2.1 Dynamic Memory Loading
**Goal**: Update memory context as conversation topics evolve
**Implementation**:
```javascript
// claude-hooks/topic-change.js
export async function onTopicChange(context, newTopics) {
const additionalMemories = await queryMemoryService({
semanticSearch: newTopics,
excludeAlreadyLoaded: context.loadedMemoryHashes,
limit: 5
});
if (additionalMemories.length > 0) {
await updateContext(`
Additional relevant context:
${formatMemoriesForContext(additionalMemories)}
`);
}
}
```
### 2.2 Conversation Continuity
**Goal**: Link conversations across sessions for seamless continuity
**Features**:
- Cross-session conversation linking
- Session outcome consolidation
- Persistent conversation threads
### 2.3 Smart Memory Filtering
**Goal**: AI-powered memory selection based on conversation analysis
**Implementation**:
- Natural language processing for topic extraction
- Semantic similarity matching
- Relevance decay algorithms
- User preference learning
## Phase 3: Advanced Integration Features (Weeks 5-6)
### 3.1 Auto-Tagging Conversations
**Goal**: Automatically categorize and tag conversation outcomes
**Implementation**:
```javascript
// claude-hooks/session-end.js
export async function onSessionEnd(context) {
const sessionSummary = await analyzeSession(context.conversation);
const autoTags = await generateTags(sessionSummary);
await storeMemory({
content: sessionSummary,
tags: [...autoTags, 'session-outcome', context.project.name],
type: 'session-summary'
});
}
```
### 3.2 Memory Consolidation System
**Goal**: Intelligent organization of session insights and outcomes
**Features**:
- Duplicate detection and merging
- Insight extraction and categorization
- Knowledge graph building
- Memory lifecycle management
### 3.3 Cross-Session Intelligence
**Goal**: Maintain knowledge continuity across different coding sessions
**Implementation**:
- Session relationship mapping
- Progressive memory building
- Context evolution tracking
- Learning pattern recognition
## Technical Architecture
### Core Components
1. **Memory Hook System**
- Session lifecycle hooks
- Project context detection
- Dynamic memory injection
2. **Intelligent Memory Selection**
- Relevance scoring algorithms
- Topic analysis and matching
- Context-aware filtering
3. **Context Management**
- Dynamic context updates
- Memory formatting utilities
- Conversation continuity tracking
4. **Integration Layer**
- Claude Code hooks interface
- MCP Memory Service connector
- Project structure analysis
### API Enhancements
```python
# New memory service endpoints for Claude Code integration
@app.post("/claude-code/session-context")
async def get_session_context(project: ProjectContext):
"""Get relevant memories for Claude Code session initialization."""
@app.post("/claude-code/dynamic-context")
async def get_dynamic_context(topics: List[str], exclude: List[str]):
"""Get additional context based on evolving conversation topics."""
@app.post("/claude-code/consolidate-session")
async def consolidate_session(session_data: SessionData):
"""Store and organize session outcomes with intelligent tagging."""
```
## Success Metrics
### Phase 1 Targets
- ✅ 100% automatic session context injection
- ✅ <2 second session startup time with memory loading
- ✅ 90%+ relevant memory selection accuracy
### Phase 2 Targets
- ✅ Real-time context updates based on conversation flow
- ✅ 95%+ conversation continuity across sessions
- ✅ Intelligent topic detection and memory matching
### Phase 3 Targets
- ✅ Fully autonomous memory management
- ✅ Cross-session knowledge building
- ✅ Adaptive learning from user interactions
## Implementation Priority
**High Priority (Phase 1)**:
1. Session startup hooks for automatic memory injection
2. Project-aware memory selection algorithms
3. Basic context injection utilities
**Medium Priority (Phase 2)**:
1. Dynamic memory loading based on conversation topics
2. Cross-session conversation linking
3. Smart memory filtering enhancements
**Enhancement Priority (Phase 3)**:
1. Auto-tagging and session outcome consolidation
2. Advanced memory organization systems
3. Machine learning-based relevance optimization
## Risk Mitigation
### Technical Risks
- **Performance Impact**: Implement lazy loading and caching strategies
- **Context Overload**: Smart filtering and relevance-based selection
- **Memory Service Availability**: Graceful degradation without memory service
### User Experience Risks
- **Information Overload**: Configurable memory injection levels
- **Privacy Concerns**: Clear memory access controls and user preferences
- **Learning Curve**: Seamless integration with minimal configuration required
## Conclusion
This enhancement transforms issue #14 from a basic utility into a revolutionary memory-aware Claude Code experience. By leveraging Claude Code's advanced features, we can deliver the original vision of automatic memory context injection while providing intelligent, context-aware assistance that learns and adapts to user patterns.
The phased approach ensures incremental value delivery while building towards a sophisticated memory-aware development environment that fundamentally changes how developers interact with their code and project knowledge.