Skip to main content
Glama

MCP Memory Service

enhancement-roadmap-issue-14.md7.67 kB
# Memory Awareness Enhancement Roadmap - Issue #14 ## Executive Summary This roadmap outlines the transformation of GitHub issue #14 from a basic external utility to a sophisticated memory-aware Claude Code experience leveraging advanced features like hooks, project awareness, and MCP deep integration. ## Phase 1: Automatic Memory Awareness (Weeks 1-2) ### 1.1 Session Startup Hooks **Goal**: Automatically inject relevant memories when starting a Claude Code session **Implementation**: ```javascript // claude-hooks/session-start.js export async function onSessionStart(context) { const projectContext = await detectProjectContext(context.workingDirectory); const relevantMemories = await queryMemoryService({ tags: [projectContext.name, 'key-decisions', 'recent-insights'], timeRange: 'last-2-weeks', limit: 8 }); if (relevantMemories.length > 0) { await injectSystemMessage(` Recent project context from memory: ${formatMemoriesForContext(relevantMemories)} `); } } ``` **Features**: - Project detection based on git repository and directory structure - Smart memory filtering by project relevance and recency - Automatic context injection without user intervention ### 1.2 Project-Aware Memory Selection **Goal**: Intelligently select memories based on current project context **Implementation**: ```python # Enhanced memory retrieval with project awareness class ProjectAwareMemoryRetrieval: def select_relevant_memories(self, project_context): # Score memories by relevance to current project memories = self.memory_service.search_by_tags([ project_context.name, f"tech:{project_context.language}", "decisions", "architecture", "bugs-fixed" ]) # Apply relevance scoring scored_memories = self.score_by_relevance(memories, project_context) return scored_memories[:10] ``` ### 1.3 Conversation Context Injection **Goal**: Seamlessly inject memory context into conversation flow **Deliverables**: - Session initialization hooks - Project context detection algorithm - Memory relevance scoring system - Context formatting and injection utilities ## Phase 2: Intelligent Context Updates (Weeks 3-4) ### 2.1 Dynamic Memory Loading **Goal**: Update memory context as conversation topics evolve **Implementation**: ```javascript // claude-hooks/topic-change.js export async function onTopicChange(context, newTopics) { const additionalMemories = await queryMemoryService({ semanticSearch: newTopics, excludeAlreadyLoaded: context.loadedMemoryHashes, limit: 5 }); if (additionalMemories.length > 0) { await updateContext(` Additional relevant context: ${formatMemoriesForContext(additionalMemories)} `); } } ``` ### 2.2 Conversation Continuity **Goal**: Link conversations across sessions for seamless continuity **Features**: - Cross-session conversation linking - Session outcome consolidation - Persistent conversation threads ### 2.3 Smart Memory Filtering **Goal**: AI-powered memory selection based on conversation analysis **Implementation**: - Natural language processing for topic extraction - Semantic similarity matching - Relevance decay algorithms - User preference learning ## Phase 3: Advanced Integration Features (Weeks 5-6) ### 3.1 Auto-Tagging Conversations **Goal**: Automatically categorize and tag conversation outcomes **Implementation**: ```javascript // claude-hooks/session-end.js export async function onSessionEnd(context) { const sessionSummary = await analyzeSession(context.conversation); const autoTags = await generateTags(sessionSummary); await storeMemory({ content: sessionSummary, tags: [...autoTags, 'session-outcome', context.project.name], type: 'session-summary' }); } ``` ### 3.2 Memory Consolidation System **Goal**: Intelligent organization of session insights and outcomes **Features**: - Duplicate detection and merging - Insight extraction and categorization - Knowledge graph building - Memory lifecycle management ### 3.3 Cross-Session Intelligence **Goal**: Maintain knowledge continuity across different coding sessions **Implementation**: - Session relationship mapping - Progressive memory building - Context evolution tracking - Learning pattern recognition ## Technical Architecture ### Core Components 1. **Memory Hook System** - Session lifecycle hooks - Project context detection - Dynamic memory injection 2. **Intelligent Memory Selection** - Relevance scoring algorithms - Topic analysis and matching - Context-aware filtering 3. **Context Management** - Dynamic context updates - Memory formatting utilities - Conversation continuity tracking 4. **Integration Layer** - Claude Code hooks interface - MCP Memory Service connector - Project structure analysis ### API Enhancements ```python # New memory service endpoints for Claude Code integration @app.post("/claude-code/session-context") async def get_session_context(project: ProjectContext): """Get relevant memories for Claude Code session initialization.""" @app.post("/claude-code/dynamic-context") async def get_dynamic_context(topics: List[str], exclude: List[str]): """Get additional context based on evolving conversation topics.""" @app.post("/claude-code/consolidate-session") async def consolidate_session(session_data: SessionData): """Store and organize session outcomes with intelligent tagging.""" ``` ## Success Metrics ### Phase 1 Targets - ✅ 100% automatic session context injection - ✅ <2 second session startup time with memory loading - ✅ 90%+ relevant memory selection accuracy ### Phase 2 Targets - ✅ Real-time context updates based on conversation flow - ✅ 95%+ conversation continuity across sessions - ✅ Intelligent topic detection and memory matching ### Phase 3 Targets - ✅ Fully autonomous memory management - ✅ Cross-session knowledge building - ✅ Adaptive learning from user interactions ## Implementation Priority **High Priority (Phase 1)**: 1. Session startup hooks for automatic memory injection 2. Project-aware memory selection algorithms 3. Basic context injection utilities **Medium Priority (Phase 2)**: 1. Dynamic memory loading based on conversation topics 2. Cross-session conversation linking 3. Smart memory filtering enhancements **Enhancement Priority (Phase 3)**: 1. Auto-tagging and session outcome consolidation 2. Advanced memory organization systems 3. Machine learning-based relevance optimization ## Risk Mitigation ### Technical Risks - **Performance Impact**: Implement lazy loading and caching strategies - **Context Overload**: Smart filtering and relevance-based selection - **Memory Service Availability**: Graceful degradation without memory service ### User Experience Risks - **Information Overload**: Configurable memory injection levels - **Privacy Concerns**: Clear memory access controls and user preferences - **Learning Curve**: Seamless integration with minimal configuration required ## Conclusion This enhancement transforms issue #14 from a basic utility into a revolutionary memory-aware Claude Code experience. By leveraging Claude Code's advanced features, we can deliver the original vision of automatic memory context injection while providing intelligent, context-aware assistance that learns and adapts to user patterns. The phased approach ensures incremental value delivery while building towards a sophisticated memory-aware development environment that fundamentally changes how developers interact with their code and project knowledge.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/doobidoo/mcp-memory-service'

If you have feedback or need assistance with the MCP directory API, please join our Discord server